Real-Time Monitoring of Physiological and Postural Parameters to Evaluate Human Reactions in Virtual Reality for Safety Training
Abstract
1. Introduction
2. Materials and Methods
2.1. Current Quantitative Methods for Evaluating VR-Induced Reactions
2.2. Case Study Participants
2.3. Case Study Instrumentations
2.4. Case Study Experimental Protocol
- Maximum Angle: maximum angle recorded during trunk forward and lateral bending during the hazardous event.
- Mean Angle: average angle recorded during trunk forward and lateral bending over the trial.
- Hazardous Instant reaction: time instant at which the peak of lateral or forward trunk angle occurs after the arrival of the forklift in front of the subject. This metric was defined to capture the most significant postural deviation occurring immediately after the hazardous stimulus (i.e., the sudden appearance of the forklift). It provides an objective time marker of the subject’s instinctive reaction, representing a critical moment to evaluate awareness, perceived danger, and physical readiness to respond in the simulated scenario.
- Erect posture: ;
- Flexed posture: ;
- Extreme flexion: .
- Erect posture: ;
- Flexed posture: ;
- Extreme flexion: .
3. Case Study Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dias Barkokebas, R.; Li, X. Use of Virtual Reality to Assess the Ergonomic Risk of Industrialized Construction Tasks. J. Constr. Eng. Manag. 2021, 147, 04020183. [Google Scholar] [CrossRef]
- Dias Barkokebas, R.; Li, X. VR-RET: A Virtual Reality–Based Approach for Real-Time Ergonomics Training on Industrialized Construction Tasks. J. Constr. Eng. Manag. 2023, 149, 04023098. [Google Scholar] [CrossRef]
- Norris, M.W.; Spicer, K.; Byrd, T. Virtual Reality: The New Pathway for Effective Safety Training. Prof. Saf. 2019, 64, 36–39. [Google Scholar]
- Duorinaah, F.X.; Olatunbosun, S.; Won, J.-H.; Kim, M. Advancing Construction Safety Through a Combination of Immersive Technologies and Physiological Monitoring—A Systematic Review. Int. Conf. Constr. Eng. Proj. Manag. 2024, 285–292. [Google Scholar] [CrossRef]
- Dibbets, P.; Schulte-Ostermann, M.A. Virtual reality, real emotions: A novel analogue for the assessment of risk factors of post-traumatic stress disorder. Front. Psychol. 2015, 6, 681. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Yeh, S.-C.; Huang, Y.; Wu, Z.; Cui, J.; Zheng, L. The Effect of Augmented Reality and Virtual Reality on Inducing Anxiety for Exposure Therapy: A Comparison Using Heart Rate Variability. J. Healthc. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Górski, F.; Buń, P.; Wichniarek, R.; Zawadzki, P.; Hamrol, A. Effective Design of Educational Virtual Reality Applications for Medicine using Knowledge-Engineering Techniques. Eurasia J. Math. Sci. Technol. Educ. 2016, 13, 395–416. [Google Scholar] [CrossRef]
- Maskeliūnas, R.; Damaševičius, R.; Blažauskas, T.; Canbulut, C.; Adomavičienė, A.; Griškevičius, J. BiomacVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Using Depth Sensors. Electronics 2023, 12, 339. [Google Scholar] [CrossRef]
- Kačerová, I.; Kubr, J.; Hořejší, P.; Kleinová, J. Ergonomic Design of a Workplace Using Virtual Reality and a Motion Capture Suit. Appl. Sci. 2022, 12, 2150. [Google Scholar] [CrossRef]
- Yuen, K.K.; Choi, S.H.; Yang, X.B. A Full-immersive CAVE-based VR Simulation System of Forklift Truck Operations for Safety Training. Comput.-Aided Des. Appl. 2010, 7, 235–245. [Google Scholar] [CrossRef]
- Donno, L.; Monoli, C.; Frigo, C.A.; Galli, M. Forward and Backward Walking: Multifactorial Characterization of Gait Parameters. Sensors 2023, 23, 4671. [Google Scholar] [CrossRef] [PubMed]
- Ould-Slimane, M.; Bouyge, B.; Chastan, N.; Ferrand-Devouge, E.; Dujardin, F.; Bertucchi, W.; Michelin, P.; Gillibert, A.; Gauthé, R. Optoelectronic Study of Gait Kinematics in Sagittal Spinopelvic Imbalance. World Neurosurg. 2022, 158, e956–e963. [Google Scholar] [CrossRef]
- Vastola, R.; Medved, V.; Daniele, A.; Coppola, S. Maurizio Sibilio Use of Optoelectronic Systems for the Analysis of Technique in Trials. J. Sports Sci. 2016, 4, 293–299. [Google Scholar] [CrossRef]
- Cimolin, V.; Premoli, C.; Bernardelli, G.; Amenta, E.; Galli, M.; Donno, L.; Lucini, D.; Fatti, L.M.; Cangiano, B.; Persani, L.; et al. ACROMORFO study: Gait analysis in a cohort of acromegalic patients. J. Endocrinol. Investig. 2024, 47, 2469–2476. [Google Scholar] [CrossRef] [PubMed]
- Caro, C.; Malpica, N. Video and optoelectronics in movement disorders. In International Review of Movement Disorders; Elsevier: Amsterdam, The Netherlands, 2023; Volume 5, pp. 227–244. ISBN 978-0-323-99237-4. [Google Scholar]
- Capodaglio, P.; Gobbi, M.; Donno, L.; Fumagalli, A.; Buratto, C.; Galli, M.; Cimolin, V. Effect of Obesity on Knee and Ankle Biomechanics during Walking. Sensors 2021, 21, 7114. [Google Scholar] [CrossRef] [PubMed]
- Corazza, S.; Mündermann, L.; Gambaretto, E.; Ferrigno, G.; Andriacchi, T.P. Markerless Motion Capture through Visual Hull, Articulated ICP and Subject Specific Model Generation. Int. J. Comput. Vis. 2010, 87, 156–169. [Google Scholar] [CrossRef]
- Grandi, F.; Morganti, A.; Khamaisi, R.K.; Peruzzini, M.; Pellicciari, M. Enhancing automated production lines with human-centricity: How to combine virtual reality simulation and human data analysis. Int. J. Comput. Integr. Manuf. 2025, 38, 952–976. [Google Scholar] [CrossRef]
- Numfu, M.; Riel, A.; Noel, F. Virtual Reality Based Digital Chain for Maintenance Training. Procedia CIRP 2019, 84, 1069–1074. [Google Scholar] [CrossRef]
- Caputo, F.; Greco, A.; D’Amato, E.; Notaro, I.; Spada, S. On the use of Virtual Reality for a human-centered workplace design. Procedia Struct. Integr. 2018, 8, 297–308. [Google Scholar] [CrossRef]
- Peperkorn, H.M.; Diemer, J.; Mühlberger, A. Temporal dynamics in the relation between presence and fear in virtual reality. Comput. Hum. Behav. 2015, 48, 542–547. [Google Scholar] [CrossRef]
- Oagaz, H.; Schoun, B.; Choi, M.-H. Real-time posture feedback for effective motor learning in table tennis in virtual reality. Int. J. Hum.-Comput. Stud. 2022, 158, 102731. [Google Scholar] [CrossRef]
- Horsak, B.; Simonlehner, M.; Dumphart, B.; Siragy, T. Overground walking while using a virtual reality head mounted display increases variability in trunk kinematics and reduces dynamic balance in young adults. Virtual Real. 2023, 27, 3021–3032. [Google Scholar] [CrossRef]
- de-Juan-Ripoll, C.; Soler-Domínguez, J.L.; Guixeres, J.; Contero, M.; Álvarez Gutiérrez, N.; Alcañiz, M. Virtual Reality as a New Approach for Risk Taking Assessment. Front. Psychol. 2018, 9, 2532. [Google Scholar] [CrossRef]
- Cirio, G.; Olivier, A.-H.; Marchal, M.; Pettre, J. Kinematic Evaluation of Virtual Walking Trajectories. IEEE Trans. Visual. Comput. Graph. 2013, 19, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Weibel, R.P.; Grübel, J.; Zhao, H.; Thrash, T.; Meloni, D.; Hölscher, C.; Schinazi, V.R. Virtual Reality Experiments with Physiological Measures. J. Vis. Exp. JoVE 2018, 138, 58318. [Google Scholar] [CrossRef]
- Parsons, T.; Gaggioli, A.; Riva, G. Virtual Reality for Research in Social Neuroscience. Brain Sci. 2017, 7, 42. [Google Scholar] [CrossRef]
- Arlati, S.; Keijsers, N.; Paolini, G.; Ferrigno, G.; Sacco, M. Kinematics of aimed movements in ecological immersive virtual reality: A comparative study with real world. Virtual Real. 2022, 26, 885–901. [Google Scholar] [CrossRef]
- Grabiner, M.D.; Donovan, S.; Bareither, M.L.; Marone, J.R.; Hamstra-Wright, K.; Gatts, S.; Troy, K.L. Trunk kinematics and fall risk of older adults: Translating biomechanical results to the clinic. J. Electromyogr. Kinesiol. 2008, 18, 197–204. [Google Scholar] [CrossRef]
- Duchene, Y.; Mornieux, G.; Petel, A.; Perrin, P.P.; Gauchard, G.C. The trunk’s contribution to postural control under challenging balance conditions. Gait Posture 2021, 84, 102–107. [Google Scholar] [CrossRef]
- Ohlendorf, D.; Erbe, C.; Hauck, I.; Nowak, J.; Hermanns, I.; Ditchen, D.; Ellegast, R.; Groneberg, D.A. Kinematic analysis of work-related musculoskeletal loading of trunk among dentists in Germany. BMC Musculoskelet. Disord. 2016, 17, 427. [Google Scholar] [CrossRef]
- Liu, J.; Lockhart, T.E. Trunk Angular Kinematics During Slip-Induced Backward Falls and Activities of Daily Living. J. Biomech. Eng. 2014, 136, 101005. [Google Scholar] [CrossRef] [PubMed]
- Demarteau, J.; Jansen, B.; Van Keymolen, B.; Mets, T.; Bautmans, I. Trunk inclination and hip extension mobility, but not thoracic kyphosis angle, are related to 3D-accelerometry based gait alterations and increased fall-risk in older persons. Gait Posture 2019, 72, 89–95. [Google Scholar] [CrossRef]
- Vanderlinden, A.O.; Nevisipour, M.; Sugar, T.; Lee, H. Reduced trunk movement control during motor dual-tasking in older adults. Hum. Mov. Sci. 2024, 95, 103223. [Google Scholar] [CrossRef]
- Wilson, E.B.; Bergquist, J.S.; Wright, W.G.; Jacobs, D.A. Gait stability in virtual reality: Effects of VR display modality in the presence of visual perturbations. J. Neuroeng. Rehabil. 2025, 22, 32. [Google Scholar] [CrossRef]
- Chang, T.P.; Beshay, Y.; Hollinger, T.; Sherman, J.M. Comparisons of Stress Physiology of Providers in Real-Life Resuscitations and Virtual Reality–Simulated Resuscitations. Simul. Healthc. 2019, 14, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Clifford, R.M.S.; Engelbrecht, H.; Jung, S.; Oliver, H.; Billinghurst, M.; Lindeman, R.W.; Hoermann, S. Aerial firefighter radio communication performance in a virtual training system: Radio communication disruptions simulated in VR for Air Attack Supervision. Vis. Comput. 2021, 37, 63–76. [Google Scholar] [CrossRef]
- Herumurti, D.; Yuniarti, A.; Rimawan, P.; Yunanto, A.A. Overcoming Glossophobia Based on Virtual Reality and Heart Rate Sensors. In Proceedings of the 2019 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), Bali, Indonesia, 1–3 July 2019; IEEE: Bali, Indonesia, 2019; pp. 139–144. [Google Scholar]
- Fominykh, M.; Prasolova-Førland, E.; Stiles, T.C.; Krogh, A.B.; Linde, M. Conceptual framework for therapeutic training with biofeedback in virtual reality: First evaluation of a relaxation simulator. J. Interact. Learn. Res. 2018, 29, 51–75. [Google Scholar]
- Patel, J.; Qiu, Q.; Yarossi, M.; Merians, A.; Massood, S.; Tunik, E.; Adamovich, S.; Fluet, G. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity. Disabil. Rehabil. 2017, 39, 1515–1523. [Google Scholar] [CrossRef]
- Melnyk, R.; Campbell, T.; Holler, T.; Cameron, K.; Saba, P.; Witthaus, M.W.; Joseph, J.; Ghazi, A. See Like an Expert: Gaze-Augmented Training Enhances Skill Acquisition in a Virtual Reality Robotic Suturing Task. J. Endourol. 2021, 35, 376–382. [Google Scholar] [CrossRef]
- Faller, J.; Cummings, J.; Saproo, S.; Sajda, P. Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task. Proc. Natl. Acad. Sci. USA 2019, 116, 6482–6490. [Google Scholar] [CrossRef]
- Jeong, D.; Yoo, S.; Yun, J. Cybersickness Analysis with EEG Using Deep Learning Algorithms. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; IEEE: Osaka, Japan, 2019; pp. 827–835. [Google Scholar]
- Mündermann, L.; Corazza, S.; Andriacchi, T.P. The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications. J. Neuroeng. Rehabil. 2006, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Bottino, A.; Laurentini, A. The visual hull of smooth curved objects. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1622–1632. [Google Scholar] [CrossRef]
- Harsted, S.; Holsgaard-Larsen, A.; Hestbæk, L.; Boyle, E.; Lauridsen, H.H. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system. Chiropr. Man. Ther. 2019, 27, 39. [Google Scholar] [CrossRef]
- Arias, O.E.; Umukoro, P.E.; Stoffel, S.D.; Hopcia, K.; Sorensen, G.; Dennerlein, J.T. Associations between trunk flexion and physical activity of patient care workers for a single shift: A pilot study. Work 2017, 56, 247–255. [Google Scholar] [CrossRef]
- Gagnon, D.; Nadeau, S.; Noreau, L.; Eng, J.J.; Gravel, D. Trunk and upper extremity kinematics during sitting pivot transfers performed by individuals with spinal cord injury. Clin. Biomech. 2008, 23, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Greene, R.L.; Lu, M.-L.; Barim, M.S.; Wang, X.; Hayden, M.; Hu, Y.H.; Radwin, R.G. Estimating Trunk Angle Kinematics During Lifting Using a Computationally Efficient Computer Vision Method. Hum. Factors 2022, 64, 482–498. [Google Scholar] [CrossRef]
- Palmieri, M.; Donno, L.; Cimolin, V.; Galli, M. Cervical Range of Motion Assessment through Inertial Technology: A Validity and Reliability Study. Sensors 2023, 23, 6013. [Google Scholar] [CrossRef] [PubMed]
- Larivière, C.; Gagnon, D.; Loisel, P. The effect of load on the coordination of the trunk for subjects with and without chronic low back pain during flexion–extension and lateral bending tasks. Clin. Biomech. 2000, 15, 407–416. [Google Scholar] [CrossRef]
- Larivière, C.; Gagnon, D.; Loisel, P. The comparison of trunk muscles EMG activation between subjects with and without chronic low back pain during flexion–extension and lateral bending tasks. J. Electromyogr. Kinesiol. 2000, 10, 79–91. [Google Scholar] [CrossRef]
- Sung, P.S.; Danial, P.; Lee, D.C. Comparison of the different kinematic patterns during lateral bending between subjects with and without recurrent low back pain. Clin. Biomech. 2016, 38, 50–55. [Google Scholar] [CrossRef]
- Preuss, R.A.; Popovic, M.R. Three-dimensional spine kinematics during multidirectional, target-directed trunk movement in sitting. J. Electromyogr. Kinesiol. 2010, 20, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.M.; Mirka, G.A.; Buckner, G.D. Adaptive system identification applied to the biomechanical response of the human trunk during sudden loading. J. Biomech. 2005, 38, 2472–2479. [Google Scholar] [CrossRef] [PubMed]
- Francia, C.; Motta, F.; Donno, L.; Covarrubias, M.; Dornini, C.; Madella, A.; Galli, M. Validation of a MediaPipe System for Markerless Motion Analysis During Virtual Reality Rehabilitation. In Extended Reality; De Paolis, L.T., Arpaia, P., Sacco, M., Eds.; Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2024; Volume 15029, pp. 40–49. ISBN 978-3-031-71709-3. [Google Scholar]
- Loudon, G.; Zampelis, D.; Deininger, G. Using Real-time Biofeedback of Heart Rate Variability Measures to Track and Help Improve Levels of Attention and Relaxation. In Proceedings of the 2017 ACM SIGCHI Conference on Creativity and Cognition, New York, NY, USA, 27–30 June 2017; ACM: Singapore, 2017; pp. 348–355. [Google Scholar]
Subject | FB (°) | Max FB (°) | Hazardous Instant (%) |
---|---|---|---|
1 | 2.07 | 11.13 | 67.47 |
2 | 3.97 | 17.92 | 73.67 |
3 | 2.41 | 31.87 | 83.33 |
4 | 2.10 | 11.82 | 73.55 |
5 | 11.54 | 54.04 | 92.38 |
Subject | LB (°) | Max LB (°) | Hazardous Instant (%) |
---|---|---|---|
1 | 3.57 | 17.17 | 67.45 |
2 | 6.07 | 27.64 | 75.18 |
3 | 5.21 | 59.73 | 83.42 |
4 | 6.50 | 15.52 | 73.53 |
5 | 15.55 | 85.30 | 82.33 |
Subject | EP (%) | FP (%) | EF (%) |
---|---|---|---|
1 | 100 | 0 | 0 |
2 | 100 | 0 | 0 |
3 | 97.94 | 2.06 | 0 |
4 | 100 | 0 | 0 |
5 | 77.85 | 14.53 | 7.62 |
Subject | EP (%) | FP (%) | EF (%) |
---|---|---|---|
1 | 75.70 | 23.74 | 0 |
2 | 53.65 | 45.32 | 1.03 |
3 | 72.93 | 22.19 | 4.88 |
4 | 31.27 | 67.98 | 0.74 |
5 | 52.87 | 17.29 | 28.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francia, C.; Donno, L.; Covarrubias Rodriguez, M.; Cascini, G.; Tarabini, M.; Galli, M. Real-Time Monitoring of Physiological and Postural Parameters to Evaluate Human Reactions in Virtual Reality for Safety Training. Sensors 2025, 25, 4400. https://doi.org/10.3390/s25144400
Francia C, Donno L, Covarrubias Rodriguez M, Cascini G, Tarabini M, Galli M. Real-Time Monitoring of Physiological and Postural Parameters to Evaluate Human Reactions in Virtual Reality for Safety Training. Sensors. 2025; 25(14):4400. https://doi.org/10.3390/s25144400
Chicago/Turabian StyleFrancia, Carlalberto, Lucia Donno, Mario Covarrubias Rodriguez, Gaetano Cascini, Marco Tarabini, and Manuela Galli. 2025. "Real-Time Monitoring of Physiological and Postural Parameters to Evaluate Human Reactions in Virtual Reality for Safety Training" Sensors 25, no. 14: 4400. https://doi.org/10.3390/s25144400
APA StyleFrancia, C., Donno, L., Covarrubias Rodriguez, M., Cascini, G., Tarabini, M., & Galli, M. (2025). Real-Time Monitoring of Physiological and Postural Parameters to Evaluate Human Reactions in Virtual Reality for Safety Training. Sensors, 25(14), 4400. https://doi.org/10.3390/s25144400