Surface-Enhanced Raman Spectroscopy (SERS) Method for Rapid Detection of Neomycin and Chloramphenicol Residues in Chicken Meat
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Preparation of Samples
2.3. Collection of Raman Spectra
2.4. Optimization of Test Conditions
2.5. Data Analysis
3. Results and Discussion
3.1. Analysis of SERS Spectral Characteristics of NEO and CAP Residues in Chicken
3.2. Optimization of SERS Detection Conditions
3.3. Selection of Spectral Preprocessing Methods
3.4. Feature Parameter Extraction Based on PCA
3.5. Classification Results of NEO and CAP Residues in Chicken Meat Based on LDA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, J.; Han, X.; Wang, S.; Liu, M.; Liu, L.; Wang, P. A cucurbit[6]uril based supramolecular assembly for the detection and removal of dyes and antibiotics from water. Anal. Methods 2022, 14, 2642–2648. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Ansari, M.S.; Satsangee, S.P.; Jain, R. Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug. J. Pharm. Anal. 2021, 11, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Ghodake, G.; Shinde, S.; Saratale, R.G.; Kadam, A.; Saratale, G.D.; Syed, A.; Marraiki, N.; Elgorban, A.M.; Kim, D.Y. Silver nanoparticle probe for colorimetric detection of aminoglycoside antibiotics: Picomolar-level sensitivity toward streptomycin in water, serum, and milk samples. J. Sci. Food Agric. 2020, 100, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, D.; Liu, Q.; Shen, Y.; Wang, T. Deep eutectic solvent induced silver-gel as a flexible SERS substrate for sensitive detection of antibiotics under low temperature conditions. J. Hazard. Mater. 2025, 488, 137279. [Google Scholar] [CrossRef]
- Enyinnaya, S.O.; Iregbu, K.C.; Jamal, W.Y.; Rotimi, V.O. Antibiotic Susceptibility Profiles and Detection of Genes Mediating Extended-Spectrum β-Lactamase (Esbl) Production in Escherichia Coli Isolates from National Hospital, Abuja. Niger. J. Clin. Pract. 2022, 25, 1216–1220. [Google Scholar] [CrossRef]
- Wang, W.; Sang, Q.; Yang, M.; Du, J.; Yang, L.; Jiang, X.; Han, X.; Zhao, B. Detection of several quinolone antibiotic residues in water based on Ag-TiO2 SERS strategy. Sci. Total Environ. 2020, 702, 134956. [Google Scholar] [CrossRef]
- Munkhdelger, Y.; Gunregjav, N.; Dorjpurev, A.; Juniichiro, N.; Sarantuya, J. Detection of virulence genes, phylogenetic group and antibiotic resistance of uropathogenic Escherichia coli in Mongolia. J. Infect. Dev. Countr. 2017, 11, 51–57. [Google Scholar] [CrossRef]
- Yukhajon, P.; Somboon, T.; Sansuk, S. Enhanced adsorption and colorimetric detection of tetracycline antibiotics by using functional phosphate/carbonate composite with nanoporous network coverage. J. Environ. Sci. 2023, 126, 365–377. [Google Scholar] [CrossRef]
- Chen, X.; Li, Q.; Yuan, T.; Ma, M.; Ye, Z.; Wei, X.; Fang, X.; Mao, S. Highly Specific Antibiotic Detection on Water-Stable Black Phosphorus Field-Effect Transistors. ACS Sens. 2023, 8, 858–866. [Google Scholar] [CrossRef]
- Limwichean, S.; Leung, W.; Sataporncha, P.; Houngkamhang, N.; Nimittrakoolchai, O.; Saekow, B.; Pogfay, T.; Somboonsaksri, P.; Chia, J.Y.; Botta, R.; et al. Label free detection of multiple trace antibiotics with SERS substrates and independent components analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 295, 122584. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, X.; Zhao, G.; Shi, Y.; Wu, Y. In-situ SERS detection of quinolone antibiotic residues in aquaculture water by multifunctional Fe3O4@mTiO2@Ag nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123056. [Google Scholar] [CrossRef] [PubMed]
- Haifan, Y.; Li, D.; Miaowen, X.U.; Kang, S.; Xubo, W. Detection of aminoglycoside antibiotic residues in pork by QuEChERs method combined with SERS technique. Food Mach. 2024, 40, 68–74, 81. [Google Scholar]
- Karikalan, N.; Yamuna, A.; Lee, T.Y. Ultrasensitive detection of ineradicable and harmful antibiotic chloramphenicol residue in soil, water, and food samples. Anal. Chim. Acta 2023, 1243, 340841. [Google Scholar] [CrossRef] [PubMed]
- Ilić, M.; Pastor, K.; Romanić, R.; Vujić, Đ.; Ačanski, M. A New Challenge in Food Authenticity: Application of a Novel Mathematical Model for Rapid Quantification of Vegetable Oil Blends by Gas Chromatography—Mass Spectrometry (GC-MS). Anal. Lett. 2022, 55, 2752–2763. [Google Scholar] [CrossRef]
- Elmastas, A.; Umaz, A.; Pirinc, V.; Aydin, F. Quantitative determination and removal of pesticide residues in fresh vegetables and fruit products by LC–MS/MS and GC–MS/MS. Environ. Monit. Assess. 2023, 195, 277. [Google Scholar] [CrossRef]
- Mishra, H.; Behera, A.; Sankar Kar, S.; Pattnaik, G.; Kanhar, S.; Dash, S. Analytical Strategies for the Detection and Quantification of Nano-formulated Antibiotics: Updates and Perspectives. J. Pharm. Res. Int. 2021, 33, 384–395. [Google Scholar] [CrossRef]
- Ma, L.; Rahim, A.; Lü, B.; Saleem, M.; Zhang, X.; Li, M.; Zahid, M.; Liu, M. Synergistic SERS effects in organic/MoS2 heterojunctions with cavity structure enabling nanoplastics screening and antibiotic adsorption behavior detection. Chin. Phys. B 2025, 34, 047402. [Google Scholar] [CrossRef]
- Kirti, K.; Mandal, N.; Sarun, P.M.; Moirangthem, R.S. Ag@Au Nano Island for Sensitive SERS Detection of Pesticide Residue. IEEE Sens. J. 2025, 25, 12899–12906. [Google Scholar] [CrossRef]
- Murugesan, P.; Moses, J.A. Carbon quantum dots stabilized silver nanoparticles-based colorimetric sensor for detection of pesticide residues. Mater. Sci. Eng. B 2024, 304, 117354. [Google Scholar] [CrossRef]
- Dondorf, F.; Graf, M.; Deeb, A.A.; Rohland, O.; Felgendreff, P.; Ardelt, M.; Settmacher, U.; Rauchfuss, F. Pathogen detection in patients with perihilar cholangiocarcinoma: Implications for targeted perioperative antibiotic therapy. Hepatob. Pancreat. Dis. 2023, 22, 512–518. [Google Scholar] [CrossRef]
- Lv, M.; Pu, H.; Sun, D. A tailored dual core-shell magnetic SERS substrate with precise shell-thickness control for trace organophosphorus pesticides residues detection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 316, 124336. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Tao, S.; Mao, H.; Wei, M.; Fu, J.; Song, W. An Integrated Platform and Method for Rapid High-Throughput Quantitative Detection of Organophosphorus Pesticide Residues. IEEE Trans. Instrum. Meas. 2024, 73, 9511011. [Google Scholar] [CrossRef]
- Tao, H.; Ji, C.; Zhang, J.; Yin, Y.; Jia, W.; Jiang, X.; Xu, J.; Yang, Y. Elaborate Design of Two Novel Fluorescent Zinc-based Metal-Organic Frameworks for Highly Efficient Tetracycline Antibiotics Detection. Chem. Res. Chin. Univ. 2024, 40, 499–507. [Google Scholar] [CrossRef]
- Riswana Barveen, N.; Wang, T.; Chang, Y. Photochemical synthesis of Au nanostars on PMMA films by ethanol action as flexible SERS substrates for in-situ detection of antibiotics on curved surfaces. Chem. Eng. J. 2022, 431, 134240. [Google Scholar] [CrossRef]
- Teng, P.; Gao, D.; Yang, X.; Luo, M.; Kong, D.; Gao, S.; Liu, Z.; Li, Z.; Wen, X.; Yuan, L.; et al. In Situ SERS detection of quinolone antibiotic residues in a water environment based on optofluidic in-fiber integrated Ag nanoparticles. Appl. Opt. 2021, 60, 6659. [Google Scholar] [CrossRef]
- Chen, J.; Feng, S.; Gao, F.; Grant, E.; Xu, J.; Wang, S.; Huang, Q.; Lu, X. Fabrication of SERS-Active Substrates using Silver Nanofilm-Coated Porous Anodic Aluminum Oxide for Detection of Antibiotics. J. Food Sci. 2015, 80, N834–N840. [Google Scholar] [CrossRef]
- Sarma, D.; Nath, K.K.; Biswas, S.; Ahmed, G.A.; Nath, P. Plasma treated bimetallic nanofibers as sensitive SERS platform and deep learning model for detection and classification of antibiotics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 327, 125417. [Google Scholar] [CrossRef]
- Adeniji, O.O.; Sibanda, T.; Okoh, A.I. Molecular detection of antibiotic resistance and virulence gene determinants of Enterococcus species isolated from coastal water in the Eastern Cape Province, South Africa. Int. J. Environ. Stud. 2021, 78, 208–227. [Google Scholar] [CrossRef]
- Fu, X.; Wang, Z.; Li, J.; Ma, S.; Fu, G.; Jin, W.; Bi, W.; Dong, Y. Microcavity Fiber SERS Probe Coated With Ag Nanoparticles For Detecting Antibiotic in Milk. IEEE Photonics J. 2021, 13, 6800513. [Google Scholar] [CrossRef]
- Zhou, C.; Jiang, F.; Huang, C. Current trends in nanomaterials-mediated biosensing platforms and signal amplification strategies for antibiotics detection in dairy products. Food Health 2024, 6, 4. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Y.; Wang, W.; Yu, D.; Yang, L.; Jiang, X.; Song, W.; Zhao, B. A new semiconductor heterojunction SERS substrate for ultra-sensitive detection of antibiotic residues in egg. Food Chem. 2024, 431, 137163. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, J.; Zheng, L.; Liu, S.; Wang, Z.; He, H. Detection of new antibiotic resistance gene profile in Escherichia coli associated with avian leukosis virus infection from broiler chickens. Biocell 2020, 44, 217–224. [Google Scholar] [CrossRef]
- Ashiagbor, K.; Jayan, H.; Yosri, N.; Amaglo, N.K.; Zou, X.; Guo, Z. Advancements in SERS based systematic evolution of ligands by exponential enrichment for detection of pesticide residues in fruits and vegetables. Food Chem. 2025, 463, 141394. [Google Scholar] [CrossRef] [PubMed]
- Gerrit, F. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar]
- Wang, T.; Liu, M.; Huang, S.; Yuan, H.; Zhao, J.; Chen, J. Surface-enhanced Raman spectroscopy method for classification of doxycycline hydrochloride and tylosin in duck meat using gold nanoparticles. Poult. Sci. 2021, 100, 101165. [Google Scholar] [CrossRef]
- Bashir, K.; Shikha, S.; Rattu, G.; Jan, K.; Krishna, P.M.; Pattanayek, S.K. Pesticide residues and their detection techniques in foods using sensors—A review. J. Food Sci. Technol. 2025, 62, 221–239. [Google Scholar] [CrossRef]
- Neshov, N.N.; Manolova, A.H.; Draganov, I.R.; Tonschev, K.T.; Boumbarov, O.L. Classification of Mental Tasks from EEG Signals Using Spectral Analysis, PCA and SVM. Cybern. Inf. Technol. 2018, 18, 81–92. [Google Scholar] [CrossRef]
Pretreatment Method | Group | Classified As | Accuracy | |||
---|---|---|---|---|---|---|
I | II | III | IV | |||
Baseline correction | I | 26 | 0 | 3 | 4 | 78.79% |
II | 0 | 25 | 5 | 3 | ||
III | 2 | 3 | 21 | 7 | ||
IV | 0 | 0 | 1 | 32 | ||
Second derivative | I | 33 | 0 | 0 | 0 | 84.85% |
II | 3 | 30 | 0 | 0 | ||
III | 0 | 1 | 31 | 1 | ||
IV | 0 | 0 | 0 | 33 | ||
Baseline correction combined with second derivative | I | 33 | 0 | 0 | 0 | 100% |
II | 0 | 33 | 0 | 0 | ||
III | 0 | 0 | 33 | 0 | ||
IV | 0 | 0 | 0 | 33 |
Sample | Baseline Correction | Second Derivative | Baseline Correction Combined with Second Derivative | |||
---|---|---|---|---|---|---|
Sensitivity | Specificity | Sensitivity | Specificity | Sensitivity | Specificity | |
I | 78.79% | 97.98% | 100% | 96.97% | 100% | 100% |
II | 75.76% | 90.91% | 98.99% | 99.02% | 100% | 100% |
III | 63.63% | 93.94% | 100% | 86.73% | 100% | 100% |
IV | 96.97% | 85.86% | 100% | 98.99% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Huang, J.; Tong, N.; Chen, Q.; Peng, F.; Liu, M.; Zhao, J.; Huang, S. Surface-Enhanced Raman Spectroscopy (SERS) Method for Rapid Detection of Neomycin and Chloramphenicol Residues in Chicken Meat. Sensors 2025, 25, 3920. https://doi.org/10.3390/s25133920
Wu Y, Huang J, Tong N, Chen Q, Peng F, Liu M, Zhao J, Huang S. Surface-Enhanced Raman Spectroscopy (SERS) Method for Rapid Detection of Neomycin and Chloramphenicol Residues in Chicken Meat. Sensors. 2025; 25(13):3920. https://doi.org/10.3390/s25133920
Chicago/Turabian StyleWu, Yan, Junshi Huang, Ni Tong, Qi Chen, Fang Peng, Muhua Liu, Jinhui Zhao, and Shuanggen Huang. 2025. "Surface-Enhanced Raman Spectroscopy (SERS) Method for Rapid Detection of Neomycin and Chloramphenicol Residues in Chicken Meat" Sensors 25, no. 13: 3920. https://doi.org/10.3390/s25133920
APA StyleWu, Y., Huang, J., Tong, N., Chen, Q., Peng, F., Liu, M., Zhao, J., & Huang, S. (2025). Surface-Enhanced Raman Spectroscopy (SERS) Method for Rapid Detection of Neomycin and Chloramphenicol Residues in Chicken Meat. Sensors, 25(13), 3920. https://doi.org/10.3390/s25133920