Effects of Passive Hip Flexion and Extension Assistance in Patients with Peripheral Artery Disease and Healthy Individuals
Abstract
Highlights
- Elastic hip assistance can reduce biological hip moment and power in both healthy participants and patients with peripheral artery disease.
- Patients with peripheral artery disease can leverage an exosuit to help with their affected gastrocnemius.
- The responses to an exosuit can be different between populations, possibly because they adapt their walking to receive assistance at the most impaired joint.
- Exosuit assistance may need to be optimized specifically for each clinical population for which it is intended because the effects may be different from those in healthy individuals.
Abstract
1. Introduction
2. Materials and Methods
2.1. Exosuit Design
2.2. Protocol
2.3. Measurements
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Increasing Hip Assistance Reduced Biological Hip Kinetics
3.2. Increasing Hip Flexion Assistance Reduced Plantarflexion Moments
3.3. Maximizing Hip Extension Assistance Reduced Knee Power
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PAD | peripheral artery disease |
EMG | electromyography |
GRF | ground reaction force |
Appendix A
Variable | Group | Coefficients | Maximum Reduction | Maximum Increase | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
τdors | τfront | τdors∙τfront | Constant | % (SD) | τdors (Nm·kg−1) | τfront (Nm·kg−1) | % (SD) | τdors (Nm·kg−1) | τfront (Nm·kg−1) | ||
Positive biological hip moment (Nm∙kg−1) | Healthy | −436 ** | 120 * | ns | 105 | 40.2 (14.8) ** | 0.12 | 0 | 20.7 (28) | 0 | 0.1 |
PAD | −490 ** | 291 ** | ns | 102 | 40.1 (14.7) * | 0.10 | 0.02 | 40 (23) | 0 | 0.09 | |
Negative biological hip moment (Nm∙kg−1) | Healthy | 180 ** | −201 ** | ns | 99 | 22.2 (15.5) ** | 0 | 0.10 | 21.6 (24) * | 0.12 | 0 |
PAD | 237 ** | −389 ** | ns | 110 | 28.6 (5.2) | 0 | 0.09 | 40 (36) | 0.09 | 0 | |
Positive biological hip power (W·kg−1) | Healthy | 210 ** | −180 ** | ns | 102 | 16.7 (22) | 0 | 0.10 | 29.8 (14.3) ** | 0.12 | 0 |
PAD | 150.8 ** | ns | ns | 95 | 4.5 (10.2) | 0 | 0.09 | 15.5 (18.6) | 0.09 | 0 | |
Negative biological hip power (W·kg−1) | Healthy | ns | −85.5 * | ns | 101.5 | 10.3 (20.8) | 0 | 0.10 | 6.18 (14.5) | 0.07 | 0 |
PAD | ns | −534 ** | ns | 125 | 20.9 (19.4) | 0 | 0.06 | 35.1 (63) | 0.09 | 0 | |
Mean biceps femoris activity (%) | Healthy | ns | 147 ** | ns | 94 | 8.9 (9.2) | 0.08 | 0 | 13.5 (11.5) | 0 | 0.1 |
PAD | ns | 197 ** | −2367 * | 98 | 9.3 (14) | 0.08 | 0.05 | 14 (7.7) | 0 | 0.09 | |
Mean rectus femoris activity (%) | Healthy | ns | 74.7 * | ns | 102 | 0 | 0 | 0 | 13.8 (17.8) | 0.1 | 0.08 |
PAD | 279 ** | ns | ns | 96 | 2.4 (2.7) | 0 | 0.09 | 30.2 (30.8) | 0.1 | 0.02 | |
Positive ankle moment (Nm∙kg−1) | Healthy | ns | −85.2 * | 1191 ** | 100 | 5.6 (12.2) | 0 | 0.06 | 2.02 (16.4) | 0.10 | 0.08 |
PAD | ns | −60 ** | ns | 102 | 5.9 (5.8) | 0 | 0.09 | 5.44 (6) | 0.09 | 0 | |
Negative ankle moment (Nm∙kg−1) | Healthy | ns | 154.5 ** | −1593 ** | 98.2 | 5.8 (11.5) | 0.12 | 0.04 | 8.5 (21) | 0 | 0.06 |
PAD | ns | ns | −2084 * | 100 | 12.4 (18.8) | 0.08 | 0.05 | 4.6 (14.3) | 0 | 0.09 | |
Positive ankle power (W·kg−1) | Healthy | ns | 78.5 ** | ns | 99 | 2.4 (4.5) | 0.07 | 0 | 7.5 (9.1) | 0.07 | 0.09 |
PAD | 56.3 * | 66.7 ** | ns | 98 | 0.8 (5.1) | 0 | 0.06 | 5.8 (5.7) | 0.08 | 0.05 | |
Negative ankle power (W·kg−1) | Healthy | 89 ** | ns | −1437 ** | 97 | 7.7 (6.5) | 0 | 0.10 | 6.2 (9.7) | 0.12 | 0 |
PAD | ns | ns | ns | 102 | 0.4 (5) | 0.06 | 0 | 7 (6.6) | 0.09 | 0 | |
Mean soleus activity (%) | Healthy | ns | ns | 1143 ** | 100 | 1.1 (7.2) | 0 | 0.06 | 10.3 (13) | 0.10 | 0.08 |
PAD | 70 * | ns | ns | 97 | 3.6 (5.3) | 0 | 0.06 | 8.4 (9) | 0.09 | 0 | |
Mean gastrocnemius medialis activity (%) | Healthy | 73 * | ns | ns | 96 | 11.8 (13) | 0 | 0.06 | 8.05 (14.4) | 0.12 | 0 |
PAD | ns | −145* | ns | 107 | 7.15 (5.8) | 0 | 0.09 | 14 (29) | 0.05 | 0.05 | |
Positive knee moment (Nm∙kg−1) | Healthy | −107 * | ns | 2507 ** | 107 | 14.1 (17.6) | 0.12 | 0 | 20 (8.7) | 0.1 | 0.08 |
PAD | ns | ns | ns | 101 | 8.5 (19.5) | 0.09 | 0 | 9.8 (4.7) | 0 | 0.09 | |
Negative knee moment (Nm∙kg−1) | Healthy | ns | ns | ns | 97 | 7.7 (9.2) | 0.07 | 0 | 4.2 (17.1) | 0.12 | 0 |
PAD | ns | ns | ns | 99 | 7.7 (7.0) | 0 | 0.09 | 8.8 (17.8) | 0.09 | 0 | |
Positive knee power (W·kg−1) | Healthy | ns | ns | ns | 99 | 14.8 (40) | 0 | 0.10 | 8.5 (29.4) | 0 | 0.06 |
PAD | −134 * | ns | 4056 ** | 91 | 24.3 (9.3) | 0.09 | 0 | 4.2 (19.5) | 0.08 | 0.05 | |
Negative knee power (W·kg−1) | Healthy | −51 * | ns | 1244.5 ** | 101 | 6.0 (5.9) | 0.12 | 0 | 7.6 (8.2) | 0.1 | 0.08 |
PAD | ns | ns | ns | 103 | 0.5 (4.0) | 0.0950 | 0 | 6.3 (6.6) | 0.05 | 0.05 | |
Mean vastus medialis activity (%) | Healthy | ns | 165 * | −1822 * | 106 | 0 | 0 | 0 | 22.8 (32.6) | 0.07 | 0.09 |
PAD | ns | 222 ** | ns | 91 | 16.2 (5.2) | 0.09 | 0 | 10.3 (16) | 0 | 0.09 | |
Mean tibialis anterior activity (%) | Healthy | ns | ns | ns | 102 | 4.3 (19) | 0 | 0.06 | 7.78 (9.5) | 0 | 0.1 |
PAD | ns | ns | ns | 99 | 6.15 (5) | 0 | 0.06 | 9.5 (18) | 0.08 | 0.05 |
References
- Selinger, J.C.; O’Connor, S.M.; Wong, J.D.; Donelan, J.M. Humans Can Continuously Optimize Energetic Cost during Walking. Curr. Biol. 2015, 25, 2452–2456. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Leutzinger, T.; Hassan, M.; Schieber, M.; Koutakis, P.; Fuglestad, M.A.; DeSpiegelaere, H.; Longo, G.M.; Malcolm, P.; Johanning, J.M.; et al. Peripheral Artery Disease Causes Consistent Gait Irregularities Regardless of the Location of Leg Claudication Pain. Ann. Phys. Rehabil. Med. 2024, 67, 101793. [Google Scholar] [CrossRef] [PubMed]
- Criqui, M.H.; Matsushita, K.; Aboyans, V.; Hess, C.N.; Hicks, C.W.; Kwan, T.W.; McDermott, M.M.; Misra, S.; Ujueta, F. Lower Extremity Peripheral Artery Disease: Contemporary Epidemiology, Management Gaps, and Future Directions: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e171–e191. [Google Scholar] [CrossRef] [PubMed]
- Allison, M.A.; Ho, E.; Denenberg, J.O.; Langer, R.D.; Newman, A.B.; Fabsitz, R.R.; Criqui, M.H. Ethnic-Specific Prevalence of Peripheral Arterial Disease in the United States. Am. J. Prev. Med. 2007, 32, 328–333. [Google Scholar] [CrossRef]
- Song, P.; Rudan, D.; Zhu, Y.; Fowkes, F.J.I.; Rahimi, K.; Fowkes, F.G.R.; Rudan, I. Global, Regional, and National Prevalence and Risk Factors for Peripheral Artery Disease in 2015: An Updated Systematic Review and Analysis. Lancet Glob. Health 2019, 7, e1020–e1030. [Google Scholar] [CrossRef]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef]
- McDermott, M.M.; Ohlmiller, S.M.; Liu, K.; Guralnik, J.M.; Martin, G.J.; Pearce, W.H.; Greenland, P. Gait Alterations Associated with Walking Impairment in People with Peripheral Arterial Disease with and without Intermittent Claudication. J. Am. Geriatr. Soc. 2001, 49, 747–754. [Google Scholar] [CrossRef]
- Szymczak, M.; Krupa, P.; Oszkinis, G.; Majchrzycki, M. Gait Pattern in Patients with Peripheral Artery Disease. BMC Geriatr. 2018, 18, 52. [Google Scholar] [CrossRef]
- Scott-Pandorf, M.M.; Stergiou, N.; Johanning, J.M.; Robinson, L.; Lynch, T.G.; Pipinos, I.I. Peripheral Arterial Disease Affects Ground Reaction Forces during Walking. J. Vasc. Surg. 2007, 46, 491–499. [Google Scholar] [CrossRef]
- Rahman, H.; Anderson, C.P.; Pipinos, I.I.; Johanning, J.M.; Casale, G.P.; Dong, J.; DeSpiegelaere, H.; Hassan, M.; Myers, S.A. Muscle Forces and Power Are Significantly Reduced during Walking in Patients with Peripheral Artery Disease. J. Biomech. 2022, 135, 111024. [Google Scholar] [CrossRef]
- Hernandez, H.; Myers, S.A.; Schieber, M.; Ha, D.M.; Baker, S.; Koutakis, P.; Kim, K.-S.; Mietus, C.; Casale, G.P.; Pipinos, I.I. Quantification of Daily Physical Activity and Sedentary Behavior of Claudicating Patients. Ann. Vasc. Surg. 2019, 55, 112–121. [Google Scholar] [CrossRef] [PubMed]
- McGrae McDermott, M.; Greenland, P.; Liu, K.; Guralnik, J.M.; Criqui, M.H.; Dolan, N.C.; Chan, C.; Celic, L.; Pearce, W.H.; Schneider, J.R.; et al. Leg Symptoms in Peripheral Arterial DiseaseAssociated Clinical Characteristics and Functional Impairment. JAMA 2001, 286, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, S.; Zhou, T.; Xiong, C. On the Biological Mechanics and Energetics of the Hip Joint Muscle–Tendon System Assisted by Passive Hip Exoskeleton. Bioinspir. Biomim. 2018, 14, 016012. [Google Scholar] [CrossRef]
- Dembia, C.L.; Silder, A.; Uchida, T.K.; Hicks, J.L.; Delp, S.L. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Walking with Heavy Loads. PLoS ONE 2017, 12, e0180320. [Google Scholar] [CrossRef]
- Kim, J.; Quinlivan, B.T.; Deprey, L.-A.; Arumukhom Revi, D.; Eckert-Erdheim, A.; Murphy, P.; Orzel, D.; Walsh, C.J. Reducing the Energy Cost of Walking with Low Assistance Levels through Optimized Hip Flexion Assistance from a Soft Exosuit. Sci. Rep. 2022, 12, 11004. [Google Scholar] [CrossRef]
- Sloot, L.H.; Baker, L.M.; Bae, J.; Porciuncula, F.; Clément, B.F.; Siviy, C.; Nuckols, R.W.; Baker, T.; Sloutsky, R.; Choe, D.K.; et al. Effects of a Soft Robotic Exosuit on the Quality and Speed of Overground Walking Depends on Walking Ability after Stroke. J. NeuroEng. Rehabil. 2023, 20, 113. [Google Scholar] [CrossRef]
- Malcolm, P.; Derave, W.; Galle, S.; De Clercq, D. A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking. PLoS ONE 2013, 8, e56137. [Google Scholar] [CrossRef]
- Quinlivan, B.T.; Lee, S.; Malcolm, P.; Rossi, D.M.; Grimmer, M.; Siviy, C.; Karavas, N.; Wagner, D.; Asbeck, A.; Galiana, I.; et al. Assistance Magnitude versus Metabolic Cost Reductions for a Tethered Multiarticular Soft Exosuit. Sci. Robot. 2017, 2, eaah4416. [Google Scholar] [CrossRef]
- Shin, S.Y.; Hohl, K.; Giffhorn, M.; Awad, L.N.; Walsh, C.J.; Jayaraman, A. Soft Robotic Exosuit Augmented High Intensity Gait Training on Stroke Survivors: A Pilot Study. J. NeuroEng. Rehabil. 2022, 19, 51. [Google Scholar] [CrossRef]
- Zhang, X.; Tricomi, E.; Missiroli, F.; Lotti, N.; Ma, X.; Masia, L. Improving Walking Assistance Efficiency in Real-World Scenarios with Soft Exosuits Using Locomotion Mode Detection. IEEE Int. Conf. Rehabil. Robot. Proc. 2023, 2023, 1–6. [Google Scholar] [CrossRef]
- Jackson, R.W.; Collins, S.H. An Experimental Comparison of the Relative Benefits of Work and Torque Assistance in Ankle Exoskeletons. J. Appl. Physiol. 2015, 119, 541–557. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.K.; Seth, A.; Pouya, S.; Dembia, C.L.; Hicks, J.L.; Delp, S.L. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running. PLoS ONE 2016, 11, e0163417. [Google Scholar] [CrossRef] [PubMed]
- Haufe, F.L.; Wolf, P.; Riener, R.; Grimmer, M. Biomechanical Effects of Passive Hip Springs during Walking. J. Biomech. 2020, 98, 109432. [Google Scholar] [CrossRef]
- Chen, L.; Chen, C.; Ye, X.; Wang, Z.; Liu, Y.; Cao, W.; Chen, S.; Wu, X. A Portable Waist-Loaded Soft Exosuit for Hip Flexion Assistance with Running. Micromachines 2022, 13, 157. [Google Scholar] [CrossRef]
- Panizzolo, F.A.; Annese, E.; Paoli, A.; Marcolin, G. A Single Assistive Profile Applied by a Passive Hip Flexion Device Can Reduce the Energy Cost of Walking in Older Adults. Appl. Sci. 2021, 11, 2851. [Google Scholar] [CrossRef]
- Yang, J.; Park, J.; Kim, J.; Park, S.; Lee, G. Reducing the Energy Cost of Running Using a Lightweight, Low-Profile Elastic Exosuit. J. NeuroEng. Rehabil. 2021, 18, 129. [Google Scholar] [CrossRef]
- Ye, X.; Chen, C.; Shi, Y.; Chen, L.; Wang, Z.; Zhang, Z.; Liu, Y.; Wu, X. A Time Division Multiplexing Inspired Lightweight Soft Exoskeleton for Hip and Ankle Joint Assistance. Micromachines 2021, 12, 1150. [Google Scholar] [CrossRef]
- Asbeck, A.T.; Schmidt, K.; Walsh, C.J. Soft Exosuit for Hip Assistance. Robot. Auton. Syst. 2015, 73, 102–110. [Google Scholar] [CrossRef]
- Bryan, G.M.; Franks, P.W.; Klein, S.C.; Peuchen, R.J.; Collins, S.H. A Hip–Knee–Ankle Exoskeleton Emulator for Studying Gait Assistance. Int. J. Robot. Res. 2021, 40, 722–746. [Google Scholar] [CrossRef]
- Chen, Q.; Guo, S.; Sun, L.; Liu, Q.; Jin, S. Inertial Measurement Unit-Based Optimization Control of a Soft Exosuit for Hip Extension and Flexion Assistance. J. Mech. Robot. 2021, 13, 021016. [Google Scholar] [CrossRef]
- Ding, Y.; Galiana, I.; Siviy, C.; Panizzolo, F.A.; Walsh, C. IMU-Based Iterative Control for Hip Extension Assistance with a Soft Exosuit. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3501–3508. [Google Scholar]
- Kim, J.; Heimgartner, R.; Lee, G.; Karavas, N.; Perry, D.; Ryan, D.L.; Eckert-Erdheim, A.; Murphy, P.; Choe, D.K.; Galiana, I.; et al. Autonomous and Portable Soft Exosuit for Hip Extension Assistance with Online Walking and Running Detection Algorithm. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 5473–5480. [Google Scholar]
- Lee, Y.; Roh, S.; Lee, M.; Choi, B.; Lee, J.; Kim, J.; Choi, H.; Shim, Y.; Kim, Y.-J. A Flexible Exoskeleton for Hip Assistance. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 1058–1063. [Google Scholar]
- Lewis, C.L.; Ferris, D.P. Invariant Hip Moment Pattern While Walking with a Robotic Hip Exoskeleton. J. Biomech. 2011, 44, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Thalman, C.M.; Baye-Wallace, L.; Lee, H. A Soft Robotic Hip Exosuit (SR-HExo) to Assist Hip Flexion and Extension during Human Locomotion. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 5060–5066. [Google Scholar]
- Young, A.J.; Foss, J.; Gannon, H.; Ferris, D.P. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton. Front. Bioeng. Biotechnol. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Kuo, A.D. Energetics of Actively Powered Locomotion Using the Simplest Walking Model. J. Biomech. Eng. 2001, 124, 113–120. [Google Scholar] [CrossRef]
- Koutakis, P.; Pipinos, I.I.; Myers, S.A.; Stergiou, N.; Lynch, T.G.; Johanning, J.M. Joint Torques and Powers Are Reduced during Ambulation for Both Limbs in Patients with Unilateral Claudication. J. Vasc. Surg. 2010, 51, 80–88. [Google Scholar] [CrossRef]
- Freriks, B.; Hermens, H. European Recommendations for Surface Electromyography: Results of the SENIAM Project; Roessingh Research and Development: Enschede, The Netherlands, 2000; ISBN 90-75452-14-4. [Google Scholar]
- Collins, S.H.; Adamczyk, P.G.; Ferris, D.P.; Kuo, A.D. A Simple Method for Calibrating Force Plates and Force Treadmills Using an Instrumented Pole. Gait Posture 2009, 29, 59–64. [Google Scholar] [CrossRef]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of Lower Extremity Kinematics during Level Walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef]
- Gordon, C.C.; Blackwell, L.C.; Bradtmiller, B.; Parham, L.J.; Barrientos, P.; Paquette, P.S.; Corner, D.B.; Carson, M.J.; Venezia, C.J.; Rockwell, M.B.; et al. 2012 Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics. Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/8211558 (accessed on 6 April 2025).
- Gałecki, A.; Burzykowski, T. (Eds.) Linear Mixed-Effects Model. In Linear Mixed-Effects Models Using R: A Step-by-Step Approach; Springer Texts in Statistics; Springer: New York, NY, USA, 2013; pp. 245–273. ISBN 978-1-4614-3900-4. [Google Scholar]
- Collins, S.H.; Wiggin, M.B.; Sawicki, G.S. Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton. Nature 2015, 522, 212–215. [Google Scholar] [CrossRef]
- Bregman, D.J.J.; van der Krogt, M.M.; de Groot, V.; Harlaar, J.; Wisse, M.; Collins, S.H. The Effect of Ankle Foot Orthosis Stiffness on the Energy Cost of Walking: A Simulation Study. Clin. Biomech. 2011, 26, 955–961. [Google Scholar] [CrossRef]
- Liew, B.X.W.; Morris, S.; Netto, K. The Effects of Load Carriage on Joint Work at Different Running Velocities. J. Biomech. 2016, 49, 3275–3280. [Google Scholar] [CrossRef]
- Glantz, S.A. Primer of Biostatistics, 5th ed.; McGraw-Hill/Appleton & Lange: New York, NY, USA, 2002. [Google Scholar]
- Panizzolo, F.A.; Bolgiani, C.; Di Liddo, L.; Annese, E.; Marcolin, G. Reducing the Energy Cost of Walking in Older Adults Using a Passive Hi p Flexion Device. J. NeuroEng. Rehabil. 2019, 16, 117. [Google Scholar] [CrossRef]
- Etenzi, E.; Borzuola, R.; Grabowski, A.M. Passive-Elastic Knee-Ankle Exoskeleton Reduces the Metabolic Cost of Walking. J. NeuroEng. Rehabil. 2020, 17, 104. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.; Zhou, T.; Zhou, L.; Wei, T.; Chen, W. Multi-Articular Passive Exoskeleton for Reducing the Metabolic Cost during Human Walking. In Proceedings of the 2019 Wearable Robotics Association Conference (WearRAcon), Scottsdale, AZ, USA, 25–27 March 2019; pp. 63–67. [Google Scholar]
- Barazesh, H.; Sharbafi, M.A. A Biarticular Passive Exosuit to Support Balance Control Can Reduce Me Tabolic Cost of Walking. Bioinspir. Biomim. 2020, 15, 036009. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Xiong, C.; Zhang, J.; Hu, D.; Chen, W.; Huang, X. Reducing the Metabolic Energy of Walking and Running Using an Unpowere d Hip Exoskeleton. J. Neuroeng. Rehabil. 2021, 18, 95. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, G.; Heimgartner, R.; Arumukhom Revi, D.; Karavas, N.; Nathanson, D.; Galiana, I.; Eckert-Erdheim, A.; Murphy, P.; Perry, D.; et al. Reducing the Metabolic Rate of Walking and Running with a Versatile, Portable Exosuit. Science 2019, 365, 668–672. [Google Scholar] [CrossRef]
- Chambers, A.J.; Cham, R. Slip-Related Muscle Activation Patterns in the Stance Leg during Walking. Gait Posture 2007, 25, 565–572. [Google Scholar] [CrossRef]
- Wang, S.; Pai, Y.-C.; Bhatt, T. Neuromuscular Mechanisms of Motor Adaptation to Repeated Gait-Slip Perturbations in Older Adults. Sci. Rep. 2022, 12, 19851. [Google Scholar] [CrossRef]
- Missiroli, F.; Lotti, N.; Xiloyannis, M.; Sloot, L.H.; Riener, R.; Masia, L. Relationship Between Muscular Activity and Assistance Magnitude for a Myoelectric Model Based Controlled Exosuit. Front. Robot. AI 2020, 7. [Google Scholar] [CrossRef]
- Lewis, C.L.; Ferris, D.P. Walking with Increased Ankle Pushoff Decreases Hip Muscle Moments. J. Biomech. 2008, 41, 2082–2089. [Google Scholar] [CrossRef]
- Schieber, M.N.; Hasenkamp, R.M.; Pipinos, I.I.; Johanning, J.M.; Stergiou, N.; DeSpiegelaere, H.K.; Chien, J.H.; Myers, S.A. Muscle Strength and Control Characteristics Are Altered by Peripheral Artery Disease. J. Vasc. Surg. 2017, 66, 178–186.e12. [Google Scholar] [CrossRef]
- Nuckols, R.W.; Lee, S.; Swaminathan, K.; Orzel, D.; Howe, R.D.; Walsh, C.J. Individualization of Exosuit Assistance Based on Measured Muscle Dynamics during Versatile Walking. Sci. Robot. 2021, 6, eabj1362. [Google Scholar] [CrossRef]
- Bashir, A.; Dinkel, D.; Pipinos, I.; Myers, S. Implementation of an Ankle Foot Orthosis To Improve Mobility in Peripheral Artery Disease. Arch. Phys. Med. Rehabil. 2021, 102, e24. [Google Scholar] [CrossRef]
- Bohannon, R.W. Comfortable and Maximum Walking Speed of Adults Aged 20-79 Years: Reference Values and Determinants. Age Ageing 1997, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Logan, H.L.; Glueck, D.H.; Muller, K.E. Selecting a Sample Size for Studies with Repeated Measures. BMC Med. Res. Methodol. 2013, 13, 100. [Google Scholar] [CrossRef]
- Castelloe, J.M.; O’Brien, R.G. Power and Sample Size Determination for Linear Models. Statistics, Data Analysis, and Data Mining, Paper 240-26. Available online: https://support.sas.com/resources/papers/proceedings/proceedings/sugi26/p240-26.pdf (accessed on 5 May 2023).
- Green, P.; MacLeod, C.J. SIMR: An R Package for Power Analysis of Generalized Linear Mixed Models by Simulation. Methods Ecol. Evol. 2016, 7, 493–498. [Google Scholar] [CrossRef]
- Panizzolo, F.A.; Freisinger, G.M.; Karavas, N.; Eckert-Erdheim, A.M.; Siviy, C.; Long, A.; Zifchock, R.A.; LaFiandra, M.E.; Walsh, C.J. Metabolic Cost Adaptations during Training with a Soft Exosuit Assisting the Hip Joint. Sci. Rep. 2019, 9, 9779. [Google Scholar] [CrossRef]
- Uhlrich, S.D.; Falisse, A.; Kidziński, Ł.; Muccini, J.; Ko, M.; Chaudhari, A.S.; Hicks, J.L.; Delp, S.L. OpenCap: Human Movement Dynamics from Smartphone Videos. PLoS Comput. Biol. 2023, 19, e1011462. [Google Scholar] [CrossRef]
- Orendurff, M.S.; Schoen, J.A.; Bernatz, G.C.; Segal, A.D.; Klute, G.K. How Humans Walk: Bout Duration, Steps per Bout, and Rest Duration. J. Rehabil. Res. Dev. 2008, 45, 1077–1089. [Google Scholar] [CrossRef]
Variables | Group | Tension Conditions for Maximum Reduction | Tension Conditions for Maximum Increase |
---|---|---|---|
Positive biological hip moment (Nm∙kg−1) | Healthy | No front-high back | High front-no back |
PAD | Mid front-high back | High front-no back | |
Negative biological hip moment (Nm∙kg−1) | Healthy | High front-no back | No front-high back |
PAD | High front-no back | No front-high back | |
Positive biological hip power (W·kg−1) | Healthy | High front-no back | No front-high back |
PAD | High front-no back | No front-high back | |
Negative biological hip power (W·kg−1) | Healthy | High front-no back | No front-mid back |
PAD | Mid front-no back | No front-high back | |
Mean biceps femoris activity (%) | Healthy | No front-high back | High front-no back |
PAD | Mid front-high back | High front-no back | |
Mean rectus femoris activity (%) | PAD | High front-no back | Mid front-high back |
Positive ankle moment (Nm∙kg−1) | Healthy | Mid front-no back | High front-high back |
PAD | High front-no back | No front-high back | |
Negative ankle moment (Nm∙kg−1) | Healthy | Mid front-high back | Mid front-no back |
PAD | High front-high back | High front-no back | |
Positive ankle power (W·kg−1) | Healthy | No front-mid back | High front-mid back |
PAD | Mid front-no back | Mid front-high back | |
Negative ankle power (W·kg−1) | Healthy | High front-no back | No front-high back |
Mean soleus activity (%) | Healthy | Mid front-no back | High front-high back |
PAD | Mid front-no back | No front-high back | |
Mean gastrocnemius medialis activity (%) | Healthy | Mid front-no back | No front-high back |
PAD | High front-no back | Mid front-mid back | |
Positive knee moment (Nm∙kg−1) | Healthy | No front-high back | High front-high back |
Positive knee power (W.kg−1) | PAD | No front-high back | High front-high back |
Negative knee power (W·kg−1) | Healthy | No front-high back | High front-high back |
Mean vastus medialis activity (%) | PAD | No front-high back | High front-no back |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razavi, H.; Myers, S.A.; Pipinos, I.I.; Malcolm, P. Effects of Passive Hip Flexion and Extension Assistance in Patients with Peripheral Artery Disease and Healthy Individuals. Sensors 2025, 25, 3368. https://doi.org/10.3390/s25113368
Razavi H, Myers SA, Pipinos II, Malcolm P. Effects of Passive Hip Flexion and Extension Assistance in Patients with Peripheral Artery Disease and Healthy Individuals. Sensors. 2025; 25(11):3368. https://doi.org/10.3390/s25113368
Chicago/Turabian StyleRazavi, Hiva, Sara A. Myers, Iraklis I. Pipinos, and Philippe Malcolm. 2025. "Effects of Passive Hip Flexion and Extension Assistance in Patients with Peripheral Artery Disease and Healthy Individuals" Sensors 25, no. 11: 3368. https://doi.org/10.3390/s25113368
APA StyleRazavi, H., Myers, S. A., Pipinos, I. I., & Malcolm, P. (2025). Effects of Passive Hip Flexion and Extension Assistance in Patients with Peripheral Artery Disease and Healthy Individuals. Sensors, 25(11), 3368. https://doi.org/10.3390/s25113368