A Survey on Free-Space Optical Communication with RF Backup: Models, Simulations, Experience, Machine Learning, Challenges and Future Directions
Abstract
:1. Introduction
1.1. Contribution
1.2. Paper Organization
2. Related Works
2.1. Radiofrequency (RF) Communication Characteristics
- Nakagami-m model (NM): Highly flexible for terrestrial systems, this model can adjust to different scattering and multipath fading conditions by tuning the m parameter. It is particularly effective in environments with diverse fading intensities, such as urban areas and satellite communications [24,40,41,42];
- K- model: Often employed in complex terrain, urban areas, and autonomous mobility, this model accounts for fading caused by both multipath propagation and shadowing. The parameter represents the LoS component, while the K parameter quantifies the fading distribution, providing a detailed representation of varying conditions [46,47];
- - model: A generalized model that adjusts the and parameters to account for different fading behaviors. This model is highly adaptable, encompassing both Nakagami-m and Rician models, and is suitable for scenarios requiring flexibility in modeling fading effects [48];
- Weibull model: A less complex model used to describe small-scale fading, particularly in millimeter-wave (mmWave) communications involving significant atmospheric scattering. It is useful for various fading conditions, making it versatile for different environments [44];
System | Model | Equation | Description and Parameters |
---|---|---|---|
RF | Nakagami-m [24] | x: amplitude, m: shape factor, : mean-squared signal amplitude. | |
Rician [24] | K: Rician factor, : Modified Bessel function of the first kind. | ||
Rayleigh [45] | : variance of signal amplitude. | ||
K- fading [49] | K: LoS component, : clustering parameter, : Modified Bessel function of the first kind. | ||
- fading [48] | : non-linearity, : multipath clustering. | ||
Weibull [44] | k: shape parameter, : scale parameter. | ||
FSO | Gamma–Gamma [50] | : turbulence parameters. | |
Log-Normal [51] | : standard deviation. | ||
Malaga [22] | : Bessel function parameter (). | ||
F-distribution [52] | : turbulence parameters. | ||
Exponentiated Weibull [53] | and are the shape parameters () | ||
K-distribution [54] | : scatter count, : Bessel function. | ||
Kim and Kruse [55] | A: attenuation, V: visibility distance, : a constant depending on visibility condition. | ||
Beer-Lambert Law [56] | : absorption coefficient, d: path length. |
2.2. Free-Space Optical (FSO) Communication Characteristics
- Exponentiated Weibull model (EW): Represents the limiting distribution of light intensity under weak and moderate turbulence conditions with various aperture sizes [53];
- Mie scattering model: Characterizes light scattering to predict signal attenuation resulting from adverse weather conditions, such as haze and rain [31];
- Beer-Lambert law: A fundamental principle used to estimate signal attenuation due to atmospheric absorption and scattering effects, including those caused by clouds and dust [56].
2.3. Hybrid FSO/RF
- SNR: Explains the quality of a communication link. It is the ratio of the signal power to the noise power in the form of decibels (dB);
- RSSI: Monitors the strength of the received signal and is influenced by environmental factors such as distance, obstacles, and weather conditions.
3. Performance Metrics
- Outage Probability (OP): OP measures the likelihood that signal quality will fall below an acceptable threshold, thus indicating the potential for system failure;
- Throughput: This metric reflects the system’s successful transmission rate, indicating data transfer efficiency and speed;
- Bit Error Rate (BER): BER measures the ratio of incorrect bits to the total number of transmitted bits, serving as an indicator of reliability;
- Symbol Error Rate Probability (SEP): Similar to BER, SEP measures per-symbol errors, particularly relevant in high-order modulation systems;
- Ergodic Capacity (EC): EC represents the average data transfer rate per channel, providing insights into the system’s ability to allocate data across channels;
- Latency and Jitter: Latency refers to transmission delays, while jitter denotes variations in packet arrival time. Both metrics are critical for real-time applications.
4. Classification of Hybrid Models
4.1. Hard Switching Model (HS)
4.2. Soft-Switching Model (SS)
4.3. Relay Switching Model
5. Multiple-Access Models
6. Machine-Learning Applications
7. Application Scenarios
7.1. Terrestrial Communication
7.2. Aerial Communication
7.3. Satellite Air–Ground Integrated Networks Communication (SAGIN)
7.4. Other Approaches
8. Practical Implementations
Atmospheric Effects Experiment
9. Discussion
9.1. Open Challenges
9.2. Future Research Directions
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AF | Amplify and Forward |
ATP | Acquisition, Tracking, and Pointing |
BER | Bit Error Rate |
BS | Base Station |
CDF | Cumulative Distribution Function |
CSI | Channel State Information |
DF | Decode and Forward |
EC | Ergodic Capacity |
FSO | Free-Space Optical Communication |
GG | Gamma–Gamma Model |
GS | Ground Station |
HAP | High-Altitude Platform |
HD | Heterodyne Detection |
HS | Hard Switching |
IM/DD | Intensity Modulation/Direct Detection |
IoT | Internet of Things |
IRS | Intelligent Reflecting Surfaces |
LoS | Line of Sight |
ML | Machine Learning |
NLoS | Non-Line of Sight |
NM | Nakagami-m fading model |
NOMA | Non-Orthogonal Multiple Access |
OMA | Orthogonal Multiple Access |
OP | Outage Probability |
Probability Density Function | |
PE | Pointing Error |
PSK | Phase Shift Keying |
QAM | Quadrature Amplitude Modulation |
RF | Radio Frequency Communication |
RSSI | Received Signal Strength Indicator |
Rx | Receiver |
SAGIN | Satellite Air–Ground Integrated Network |
SATCOM | Satellite Communication |
SC | Switching Scheme |
SEP | Symbol Error Rate Probability |
SNR | Signal to Noise Ratio |
SS | Soft Switching |
TCP | Transmission Control Protocol |
References
- IDTechEx. Wearable Sensors Market 2025–2035: Technologies, Trends, Players, Forecasts; Technical Report; IDTechEx: Cambridge, UK, 2025. [Google Scholar]
- Alimi, I.A.; Monteiro, P.P. Revolutionizing Free-Space Optics: A Survey of Enabling Technologies, Challenges, Trends, and Prospects of Beyond 5G Free-Space Optical (FSO) Communication Systems. Sensors 2024, 24, 8036. [Google Scholar] [CrossRef] [PubMed]
- Manie, Y.C.; Yao, C.K.; Yeh, T.Y.; Teng, Y.C.; Peng, P.C. Laser-based optical wireless communications for internet of things (IoT) application. IEEE Internet Things J. 2022, 9, 24466–24476. [Google Scholar] [CrossRef]
- Sadiku, M.N.; Musa, S.M.; Nelatury, S.R. Free space optical communications: An overview. Eur. Sci. J. 2016, 12, 55–68. [Google Scholar] [CrossRef]
- Khan, A.N.; Saeed, S.; Naeem, Y.; Zubair, M.; Massoud, Y.; Younis, U. Atmospheric Turbulence and Fog Attenuation Effects in Controlled Environment FSO Communication Links. IEEE Photonics Technol. Lett. 2022, 34, 1341–1344. [Google Scholar] [CrossRef]
- Zhu, X.; Kahn, J. Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 2002, 50, 1293–1300. [Google Scholar] [CrossRef]
- Galaktionov, I.; Sheldakova, J.; Samarkin, V.; Toporovsky, V.; Kudryashov, A. Atmospheric Turbulence with Kolmogorov Spectra: Software Simulation, Real-Time Reconstruction and Compensation by Means of Adaptive Optical System with Bimorph and Stacked-Actuator Deformable Mirrors. Photonics 2023, 10, 1147. [Google Scholar] [CrossRef]
- Israel, D.J.; Edwards, B.L.; Butler, R.L.; Moores, J.D.; Piazzolla, S.; Du Toit, N.; Braatz, L. Early results from NASA’s laser communications relay demonstration (LCRD) experiment program. In Proceedings of the Free-Space Laser Communications XXXV, San Francisco, CA, USA, 15 March 2023; Volume 12413, pp. 10–24. [Google Scholar]
- Serrano Yáñez-Mingot, P.; Gramaglia, M.; Mancini, F.; Chiraraviglio, L.; Bianchi, G. Balloons in the Sky: Unveiling the Characteristics and Trade-offs of the Google Loon Service. IEEE Trans. Mob. Comput. 2023, 22, 3165–3178. [Google Scholar] [CrossRef]
- Weiser, C.; Ossmann, D. Baseline flight control system for high altitude long endurance aircraft. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1390. [Google Scholar]
- KAUST News. KAUST Launches Terragraph Wi-Fi Project with CST. 2024. Available online: https://www.kaust.edu.sa/en/news/kaust-launches-terragraph-wi-fi-project-with-cst (accessed on 3 March 2025).
- AeroVironment News. Hawk30 Takes Flight: AeroVironment Achieves Successful First Test. 2019. Available online: https://www.avinc.com/resources/press-releases/view/hawk30-takes-flight-aerovironment-achieves-successful-first-test-flight-of (accessed on 3 March 2025).
- Stotts, L.B.; Plasson, N.; Martin, T.W.; Young, D.W.; Juarez, J. Progress towards reliable free-space optical networks. In Proceedings of the 2011-MILCOM 2011 Military Communications Conference, Baltimore, MD, USA, 7–10 November 2011; pp. 1720–1726. [Google Scholar]
- Thales Alenia Space. TAS Public Scylight 2023: Free Space Optical Communications and Quantum Communications. In Proceedings of the 6th Annual Scylight Conference 2023, Athens, Greece, 15–16 May 2023. [Google Scholar]
- Rödiger, B.; Ginthör, D.; Labrador, J.P.; Ramirez, J.; Schmidt, C.; Fuchs, C. Demonstration of an FSO/RF hybrid-communication system on aeronautical and space applications. In Laser Communication and Propagation Through the Atmosphere and Oceans IX; SPIE: Bellingham, WA, USA, 2020; Volume 11506, p. 1150603. [Google Scholar]
- Aboelala, O.; Lee, I.E.; Chung, G.C. A survey of hybrid free space optics (FSO) communication networks to achieve 5G connectivity for backhauling. Entropy 2022, 24, 1573. [Google Scholar] [CrossRef]
- Raj, A.B.; Majumder, A.K. Historical perspective of free space optical communications: From the early dates to today’s developments. IET Commun. 2019, 13, 2405–2419. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Amjad, H. A comprehensive survey on hybrid wireless networks: Practical considerations, challenges, applications and research directions. Opt. Quantum Electron. 2021, 53, 523. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Hamza, A.S.; Deogun, J.S.; Alexander, D.R. Classification framework for free space optical communication links and systems. IEEE Commun. Surv. Tutor. 2018, 21, 1346–1382. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hasan, M.K.; Shahjalal, M.; Hossan, M.T.; Jang, Y.M. Optical wireless hybrid networks: Trends, opportunities, challenges, and research directions. IEEE Commun. Surv. Tutor. 2020, 22, 930–966. [Google Scholar] [CrossRef]
- Magidi, S.; Jabeena, A. Free space optics, channel models and hybrid modulation schemes: A review. Wirel. Pers. Commun. 2021, 119, 2951–2974. [Google Scholar] [CrossRef]
- Jahid, A.; Alsharif, M.H.; Hall, T.J. A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction. J. Netw. Comput. Appl. 2022, 200, 103311. [Google Scholar] [CrossRef]
- Trichili, A.; Ragheb, A.; Briantcev, D.; Esmail, M.A.; Altamimi, M.; Ashry, I.; Ooi, B.S.; Alshebeili, S.; Alouini, M.S. Retrofitting FSO systems in existing RF infrastructure: A non-zero-sum game technology. IEEE Open J. Commun. Soc. 2021, 2, 2597–2615. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, H. A survey on recent work in hybrid FSO/RF communication link. Int. J. Electron. Commun. Instrum. Eng. Res. Develop. 2019, 9, 25–32. [Google Scholar]
- Ghatwal, S.; Saini, H. Investigations on challenges faced by hybrid FSO/RF high-speed networks. J. Opt. 2023, 52, 924–934. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Amjad, H. Hybrid FSO/RF networks: A review of practical constraints, applications and challenges. Opt. Switch. Netw. 2023, 47, 100697. [Google Scholar] [CrossRef]
- Rana, N. A Short Survey of Physical Layer Security in Mixed RF-FSO Systems. Authorea 2024, preprint. [Google Scholar]
- Mikołajczyk, J.; Szabra, D.; Matyszkiel, R.; Grochowina, B. Possibilities of using FSO/RF technology in military communication systems. In Proceedings of the 2018 New Trends in Signal Processing (NTSP), Liptovský, Mikuláš, 10–12 October 2018; pp. 1–4. [Google Scholar]
- Celik, A.; Romdhane, I.; Kaddoum, G.; Eltawil, A.M. A top-down survey on optical wireless communications for the internet of things. IEEE Commun. Surv. Tutor. 2022, 25, 1–45. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Yadav, A.K. A comprehensive road map of modern communication through free-space optics. J. Opt. Commun. 2024, 44, s1497–s1513. [Google Scholar] [CrossRef]
- Singh, D.; Swaminathan, R. Comprehensive performance analysis of hovering UAV-based FSO communication system. IEEE Photonics J. 2022, 14, 1–13. [Google Scholar] [CrossRef]
- Wondmagen, A.B.; Lakew, D.S.; Tran, A.T.; Paek, J.; Cho, S. A Review on FSO/RF based Satellite-Aerial-Ground Communication Systems. In Proceedings of the 2024 International Conference on Information Networking (ICOIN), Ho Chi Minh City, Vietnam, 17–19 January 2024; pp. 421–425. [Google Scholar]
- Carrasco-Casado, A.; Shiratama, K.; Kolev, D.; Ono, F.; Tsuji, H.; Toyoshima, M. Miniaturized multi-platform free-space laser-communication terminals for beyond-5G networks and space applications. Photonics 2024, 11, 545. [Google Scholar] [CrossRef]
- Bakhsh, Z.M.; Omid, Y.; Chen, G.; Kayhan, F.; Ma, Y.; Tafazolli, R. Multi-satellite MIMO systems for direct satellite-to-device communications: A survey. IEEE Commun. Surv. Tutor. 2024; early access. [Google Scholar]
- Lapčák, M.; Ovseník, L.; Oravec, J.; Zdraveckỳ, N. Investigation of machine learning methods for prediction of measured values of atmospheric channel for hybrid FSO/RF system. Photonics 2022, 9, 524. [Google Scholar] [CrossRef]
- Khalid, H.; Sajid, S.M.; Nistazakis, H.E.; Ijaz, M. Survey on limitations, applications and challenges for machine learning aided hybrid FSO/RF systems under fog and smog influence. J. Mod. Opt. 2024, 71, 101–125. [Google Scholar] [CrossRef]
- Al-Gailani, S.A.; Salleh, M.F.M.; Salem, A.A.; Shaddad, R.Q.; Sheikh, U.U.; Algeelani, N.A.; Almohamad, T.A. A survey of free space optics (FSO) communication systems, links, and networks. IEEE Access 2020, 9, 7353–7373. [Google Scholar] [CrossRef]
- Soltani, M.D.; Sarbazi, E.; Bamiedakis, N.; De Souza, P.; Kazemi, H.; Elmirghani, J.M.; White, I.H.; Penty, R.V.; Haas, H.; Safari, M. Safety analysis for laser-based optical wireless communications: A tutorial. Proc. IEEE 2022, 110, 1045–1072. [Google Scholar] [CrossRef]
- Nath, S.; Shrivastava, S.K.; Sengar, S.; Singh, S.P. Novel architectures for efficient RF usage in hybrid FSO/RF system. In Proceedings of the 2018 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Indore, India, 16–19 December 2018; pp. 1–6. [Google Scholar]
- Ninos, M.P.; Mukherjee, P.; Psomas, C.; Krikidis, I. Full-Duplex DF Relaying with Parallel Hybrid FSO/RF Transmissions. IEEE Open J. Commun. Soc. 2021, 2, 2502–2515. [Google Scholar] [CrossRef]
- Uniyal, S.; Vishwakarma, N.; Singh, D.; Ramabadran, S. IRS-Aided Hybrid FSO/RF Communication System with Selection Combining. In Proceedings of the 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 985–990. [Google Scholar] [CrossRef]
- Shao, J.; Liu, Y.; Du, X.; Xie, T. Adaptive Modulation Scheme for Soft-Switching Hybrid FSO/RF Links Based on Machine Learning. Photonics 2024, 11, 404. [Google Scholar] [CrossRef]
- Roumelas, G.D.; Nistazakis, H.; Stassinakis, A.; Tombras, G.; Volos, C.K. Triple Hybrid Terresstrial FSO/RF/MMW System with Receiver’s Diversity. In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Bag, B.; Das, A.; Bose, C.; Chandra, A. Hybrid FSO/RF-FSO Systems over Generalized Málaga Distributed Channels with Pointing Errors. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Kirubakaran, S.; Selvaraj, M. Performance Analysis of Interference Limited Hybrid FSO/RF Systems. In Proceedings of the 2022 IEEE International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 11–15 July 2022; pp. 1–5. [Google Scholar]
- Huang, L.; Liu, S.; Dai, P.; Li, M.; Chang, G.K.; Shi, Y.; Chen, X. Unified Performance Analysis of Hybrid FSO/RF System With Diversity Combining. J. Light. Technol. 2020, 38, 6788–6800. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.; Wang, X.; Lu, J.; Wang, Y.; Zhuo, Y.; Wu, R.; Wei, Z.; Liu, H. Performance Analysis of Soft-Switching FSO/THz-RF Dual-Hop AF-NOMA Link Based on Cognitive Radio. Photonics 2023, 10, 1086. [Google Scholar] [CrossRef]
- Moreno-Pozas, L.; Lopez-Martinez, F.J.; Paris, J.F.; Martos-Naya, E. The κ– μ Shadowed Fading Model: Unifying the κ– μ and η– μ Distributions. IEEE Trans. Veh. Technol. 2016, 65, 9630–9641. [Google Scholar] [CrossRef]
- Haas, H.; Elmirghani, J.; White, I. Optical wireless communication. Philos. Trans. R. Soc. A 2020, 378, 20200051. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Popoola, W.; Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with Matlab®; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Gupta, A.; Chauhan, K.; Yadav, A.; Rani, R.; Jain, A.; Muthukaruppan, L. Performance Analysis of Adaptive Combining Based Hybrid FSO/RF Communication System with Pointing Errors Over F-Distribution/Nakagami-m Channel Models. In Proceedings of the 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 5–6 May 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Barrios, R.; Dios, F. Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves. Opt. Express 2012, 20, 13055–13064. [Google Scholar] [CrossRef]
- Jakeman, E.; Tough, R. Generalized K distribution: A statistical model for weak scattering. J. Opt. Soc. Am. A 1987, 4, 1764–1772. [Google Scholar] [CrossRef]
- Zhang, W.; Hranilovic, S.; Shi, C. Soft-Switching Hybrid FSO/RF Links Using Short-Length Raptor Codes: Design and Implementation. IEEE J. Sel. Areas Commun. 2009, 27, 1698–1708. [Google Scholar] [CrossRef]
- Vishwakarma, N.; Swaminathan, R. On the capacity performance of hybrid FSO/RF system with adaptive combining over generalized distributions. IEEE Photonics J. 2021, 14, 1–12. [Google Scholar] [CrossRef]
- Rani, R.; Tiwari, A.; Tiwari, A.; Singh, A.; Singh, A.; Manan, L. Outage Performance of Hybrid FSO/RF-FSO Communication System with single threshold. In Proceedings of the 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 5–6 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Tannaz, S.; Ghobadi, C.; Nourinia, J.; Mostafapour, E. The effects of negative exponential and k-distribution modeled FSO links on the performance of diffusion adaptive networks. In Proceedings of the 2018 9th International Symposium on Telecommunications (IST), Tehran, Iran, 17–19 December 2018; pp. 19–22. [Google Scholar]
- Chen, B. Combination of FSO and RF channels by using Ethernet link aggregation. Eng. Rep. 2023, 5, e12691. [Google Scholar] [CrossRef]
- Esmail, M.A.; Ragheb, A.M.; Fathallah, H.A.; Altamimi, M.; Alshebeili, S.A. 5G-28 GHz Signal Transmission Over Hybrid All-Optical FSO/RF Link in Dusty Weather Conditions. IEEE Access 2019, 7, 24404–24410. [Google Scholar] [CrossRef]
- Haluška, R.; Ovseník, L.; Šul’aj, P. The Use of Mini Computer in Hybrid FSO/RF System. In Proceedings of the 2019 IEEE 15th International Scientific Conference on Informatics, Poprad, Slovakia, 20–22 November 2019; pp. 000357–000362. [Google Scholar]
- Liščinská, Z.; Ovseník, L.; Oravec, J. Deep Data Analysis Methods Applied for Hard Switching in Hybrid FSO/RF Systems. In Proceedings of the 2024 International Conference on Emerging eLearning Technologies and Applications (ICETA), Stary Smokovec, Slovakia, 24–25 October 2024; pp. 401–406. [Google Scholar]
- Meng, Y.; Liu, Y.; Song, S.; Yang, Y.; Guo, L. Predictive Link Switching for Energy Efficient FSO/RF Communication System. In Proceedings of the Asia Communications and Photonics Conference (ACPC), Chengdu, China, 2–5 November 2019; pp. 1–3. [Google Scholar]
- Lapčák, M.; Ovsenik, L.; Oravec, J.; Zdraveckỳ, N.; Andrejčik, S. Design and simulation of a microstrip antenna for the needs of a hybrid FSO/RF system. In Proceedings of the 2022 IEEE 16th International Scientific Conference on Informatics (Informatics), Poprad, Slovakia, 23–25 November 2022; pp. 203–207. [Google Scholar]
- Song, S.; Guo, L.; Xu, T.; Yang, Q.; Liu, Y. Experimental demonstration of hybrid FSO/RF system with adaptive link selection and switching. In Proceedings of the 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC), Beijing, China, 24–27 October 2020; pp. 1–3. [Google Scholar]
- Garlinska, M.; Pregowska, A.; Masztalerz, K.; Osial, M. From Mirrors to Free-Space Optical Communication—Historical Aspects in Data Transmission. Future Internet 2020, 12, 179. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhang, Y.; Liu, X.; Sun, L.; Fan, P.; Tian, X.; Pan, D.; Yuan, M.; Yin, Z.; Long, G.; et al. High-speed free-space optical communication using standard fiber communication components without optical amplification. Adv. Photonics Nexus 2023, 2, 065001. [Google Scholar] [CrossRef]
- Shrivastava, S.K.; Singh, S.P.; Sengar, S. Capacity Analysis of the Hybrid FSO/RF System under the Effect of Fading in Feedback Path. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020; pp. 1–7. [Google Scholar]
- Shrivastava, S.K.; Sengar, S.; Singh, S.P. On the effect of incorrect channel condition information on modified switching scheme of hybrid fso/rf system. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 1208–1217. [Google Scholar] [CrossRef]
- Shrivastava, S.K.; Sengar, S.; Singh, S.P. A new switching scheme for hybrid FSO/RF communication in the presence of strong atmospheric turbulence. Photonic Netw. Commun. 2019, 37, 53–62. [Google Scholar] [CrossRef]
- Shrivastava, S.K.; Sengar, S.; Singh, S.P.; Nath, S. Threshold optimization for modified switching scheme of hybrid FSO/RF system in the presence of strong atmospheric turbulence. Photonic Netw. Commun. 2020, 40, 103–113. [Google Scholar] [CrossRef]
- Singh, D.K.; Tiwari, B. Switching-assisted Cooperative decode-and-forward Relaying for Hybrid FSO-RF System. In Proceedings of the 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 7–9 October 2022; pp. 1–8. [Google Scholar]
- Singh, D.; Swaminathan, R.; Marrapu, A.; Madhukumar, A. Performance Analysis of Multiple HAPS-Based Hybrid FSO/RF Space-Air-Ground Network. In Proceedings of the 2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS), Bengaluru, India, 3–7 January 2024; pp. 920–926. [Google Scholar]
- Bag, B.; Das, A.; Ansari, I.S.; Prokeš, A.; Bose, C.; Chandra, A. Performance analysis of hybrid FSO systems using FSO/RF-FSO link adaptation. IEEE Photonics J. 2018, 10, 1–17. [Google Scholar] [CrossRef]
- Alathwary, W.A.; Altubaishi, E.S. An Integral of Fox’s H-functions With Application to the Performance of Hybrid FSO/RF Systems Over Generalized Fading Channels. IEEE Open J. Commun. Soc. 2025, 6, 1030–1041. [Google Scholar] [CrossRef]
- Vishwakarma, N.; Swaminathan, R. On the performance of hybrid FSO/RF system over generalized fading channels. In Proceedings of the 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), New Delhi, India, 14–17 December 2020; pp. 1–6. [Google Scholar]
- Nath, S.; Sengar, S.; Shrivastava, S.K.; Singh, S.P. Impact of atmospheric turbulence, pointing error, and traffic pattern on the performance of cognitive hybrid FSO/RF system. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 1194–1207. [Google Scholar] [CrossRef]
- Nath, S.; Shrivastava, S.K.; Sengar, S.; Singh, S.P. Deployment of Cognitive RF for Performance Enhancement of FSO systems: A FSO/Cognitive RF Hybrid Approach. In Proceedings of the 2019 International Conference on Signal Processing and Communication (ICSC), Noida, India, 7–9 March 2019; pp. 51–58. [Google Scholar] [CrossRef]
- Nath, S.; Singh, S.P.; Sengar, S. Capacity Insights for Shared-RF and On-Demand Systems. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Nath, S.; Sengar, S.; Singh, S.P. Interference Analysis in Cognitive Hybrid FSO/RF System. In Proceedings of the 2021 3rd International Conference on Signal Processing and Communication (ICPSC), Coimbatore, India, 13–14 May 2021; pp. 562–567. [Google Scholar] [CrossRef]
- Mehta, H.; Sengar, S. Computation of Secrecy and Outages for Hybrid FSO/RF System with Modified Switching. In Proceedings of the 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Dehradun, India, 11–13 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Siddharth, M.; Shah, S.; Ramabadran, S. Outage Analysis of Adaptive Combining Scheme for Hybrid FSO/RF Communication. In Proceedings of the 2020 National Conference on Communications (NCC), Kharagpur, India, 21–23 February 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Z.; Zhang, Y.; López-Benítez, M.; Zhang, J. Performance Analysis of Dual-Hop Wireless Systems Over Mixed FSO/RF Fading Channel. IEEE Access 2021, 9, 85529–85542. [Google Scholar] [CrossRef]
- Bag, B.; Das, A.; Bose, C.; Chandra, A. Improving the performance of a DF relay-aided FSO system with an additional source–relay mmWave RF backup. J. Opt. Commun. Netw. 2020, 12, 390–402. [Google Scholar] [CrossRef]
- Mogadala, V.K.; Gottapu, S.R.; Chapa, B.P. Dual Hop Hybrid FSO/RF based Backhaul Communication System for 5G Networks. In Proceedings of the 2019 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 21–23 March 2019; pp. 229–232. [Google Scholar] [CrossRef]
- Sharma, S.; Vishwakarma, N.; Swaminathan, R. Performance Analysis of IRS-Assisted Hybrid FSO/RF Communication System. In Proceedings of the 2022 National Conference on Communications (NCC), Mumbai, India, 24–27 May 2022; pp. 268–273. [Google Scholar] [CrossRef]
- Verma, G.D.; Mathur, A.; Ai, Y.; Cheffena, M. Mixed Dual-Hop IRS-Assisted FSO-RF Communication System With H-ARQ Protocols. IEEE Commun. Lett. 2022, 26, 384–388. [Google Scholar] [CrossRef]
- Sun, Q.; Hu, Q.; Chen, X.; Yang, Y.; Dang, S.; Zhang, J. Performance Analysis of RIS-Aided FSO/RF Hybrid Satellite-Terrestrial Network With Imperfect CSI. IEEE Trans. Veh. Technol. 2025, 74, 2958–2972. [Google Scholar] [CrossRef]
- Saleh Altubaishi, E.; Alhamawi, K. Capacity Analysis of Hybrid AF Multi-Hop FSO/RF System Under Pointing Errors and Weather Effects. IEEE Photonics Technol. Lett. 2019, 31, 1304–1307. [Google Scholar] [CrossRef]
- Alathwary, W.A.; Altubaishi, E.S. On the Performance Analysis of Decode-and-Forward Multi-Hop Hybrid FSO/RF Systems With Hard-Switching Configuration. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Liang, J.; Chen, M.; Ke, X. Performance Analysis of Hybrid FSO/RF-THz Relay Communication System. IEEE Photonics J. 2024; early access. [Google Scholar] [CrossRef]
- Nguyen, N.D.; Le, A.T. Employing Non-Orthogonal Multiple Access for A Dual-Hop Relaying System With FSO/RF Links. In Proceedings of the 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS), Negambo, Sri Lanka, 11–13 August 2021; pp. 346–351. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Hau, N.T.; Hang, N.T.T.; Voznak, M. On The Performance Analysis of hybrid FSO/RF Communication system in Relay Networks. In Proceedings of the 2021 29th Telecommunications Forum (TELFOR), Belgrade, Serbia, 23–24 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Mittal, S.; Yadav, P.K.; Dwivedi, V.K. Dual-Hop NOMA Relaying System For FSO/RF Channels. In Proceedings of the 2024 27th International Symposium on Wireless Personal Multimedia Communications (WPMC), Greater Noida, India, 17–20 November 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Sharma, S.; Madhukumar, A.S.; Ramabadran, R. Performance Analysis of Hybrid FSO/RF System with Transmit Aperture Selection. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sharma, S.; Madhukumar, A.; Ramabadran, S. Space Shift Keying-Based Hybrid FSO/RF System. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 18 November–16 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sharma, S.; Madhukumar, A.; Ramabadran, S. MIMO Hybrid FSO/RF System Over Generalized Fading Channels. IEEE Trans. Veh. Technol. 2021, 70, 11565–11581. [Google Scholar] [CrossRef]
- Mog, S.; Kshetrimayum, R.S. Performance Analysis of SM-based Hybrid MIMO FSO/RF System. In Proceedings of the 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Goa, India, 16–19 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Lv, L.; Yang, Z.; Fang, Y.; Guizani, M. Adaptive Interleaver and Rate-Compatible PLDPC Code Design for MIMO FSO-RF Systems. IEEE Trans. Veh. Technol. 2024, 73, 15757–15762. [Google Scholar] [CrossRef]
- Bhowal, A.; Kshetrimayum, R.S. Relay Based Hybrid FSO/RF Communication With Hybrid Spatial Modulation and Transmit Source Selection. IEEE Trans. Commun. 2020, 68, 5018–5027. [Google Scholar] [CrossRef]
- Yang, H.; Liu, C. Performance Analysis of a Coherent Heterodyne Detection Hybrid FSO/RF System Based on Nakagami-m Fading Channel and F Atmospheric Turbulence Channel. In Proceedings of the 2024 IEEE 7th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 20–22 September 2024; Volume 7, pp. 1068–1073. [Google Scholar] [CrossRef]
- Shakir, W.M.R. Performance Evaluation of a Selection Combining Scheme for the Hybrid FSO/RF System. IEEE Photonics J. 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Shakir, W.M.R.; Mahdi, A.S. Errors Rate Analysis of the Hybrid FSO/RF Systems over Foggy-Weather Fading-Induced Channel. In Proceedings of the 2019 4th Scientific International Conference Najaf (SICN), Al-Najaf, Iraq, 29–30 April 2019; pp. 156–160. [Google Scholar] [CrossRef]
- Wu, S.; Li, S.; Lin, Y.; Zhou, H. Performance Analysis of Hybrid FSO/RF Transmission Assisted Airborne Free-Space Optical Communication System. J. Commun. Inf. Netw. 2022, 7, 252–258. [Google Scholar] [CrossRef]
- Haluška, R.; Ovseník, L.; Šul’aj, P. Example of Using Algorithms for Switching Hybrid FSO/RF Systems. In Proceedings of the 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 28 September–2 October 2020; pp. 491–495. [Google Scholar]
- Song, S.; Liu, Y.; Xu, T.; Guo, L. Hybrid FSO/RF System Using Intelligent Power Control and Link Switching. IEEE Photonics Technol. Lett. 2021, 33, 1018–1021. [Google Scholar] [CrossRef]
- Song, S.; Liu, Y.; Xu, T.; Liao, S.; Guo, L. Demonstration of Channel-Predictable Free Space Optical Communication System Using Machine Learning. In Proceedings of the Optical Fiber Communication Conference (OFC), Washington, DC, USA, 6–11 June 2021; p. Th1A.36. [Google Scholar] [CrossRef]
- Song, S.; Liu, Y.; Wu, J.; Wu, T.; Zhao, L.; Guo, L. Demonstration of Intelligent Hybrid FSO/RF System Based on Enhanced GRU Prediction and Real-World Meteorological Dataset. J. Light. Technol. 2022, 40, 7048–7059. [Google Scholar] [CrossRef]
- Ayoub, A.; Wainwright, H.M.; Sansavini, G. Machine learning-enabled weather forecasting for real-time radioactive transport and contamination prediction. Prog. Nucl. Energy 2024, 173, 105255. [Google Scholar] [CrossRef]
- Pan, W.; Wang, X.; Zhou, P.; Lin, W. Time-Sensitive Federated Learning With Heterogeneous Training Intensity: A Deep Reinforcement Learning Approach. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 1402–1415. [Google Scholar] [CrossRef]
- Sandeep, V.; Gurjar, D.S.; Jiang, Y.; Yadav, S.; Pattanayak, P. Performance of V2N Communication System with Mixed RF and Hybrid FSO/RF Transmissions. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Sandeep, V.; Gurjar, D.S.; Yadav, S.; Pattanayak, P.; Jiang, Y. On the Performance Analysis of V2N Mixed RF and Hybrid FSO/RF Communication System. IEEE Photonics J. 2022, 14, 1–14. [Google Scholar] [CrossRef]
- Payal, N.; Gurjar, D.S.; Yadav, S.; Gour, R. Performance Analysis of Hybrid FSO/RF Empowered V2N Communications with Multiple Relay Units. In Proceedings of the TENCON 2023 IEEE Region 10 Conference (TENCON), Chiang Mai, Thailand, 31 October–3 November 2023; pp. 1076–1081. [Google Scholar] [CrossRef]
- Rakia, T.; Gebali, F.; Yang, H.C.; Alouini, M.S. Cross layer analysis of P2MP hybrid FSO/RF network. J. Opt. Commun. Netw. 2017, 9, 234–243. [Google Scholar] [CrossRef]
- Rakia, T.; Gebali, F.; Yang, H.C.; Alouini, M.S. Throughput analysis of point-to-multi-point hybric FSO/RF network. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Rakia, T.; Gebali, F.; Yang, H.C.; Alouini, M.S. Performance Analysis of Multiuser FSO/RF Network Under Non-Equal Priority With P -Persistence Protocol. IEEE Trans. Wirel. Commun. 2020, 19, 1802–1813. [Google Scholar] [CrossRef]
- Sharma, S.; Madhukumar, A.S.; Ramabadran, S. Switching-Based Cooperative Decode-and-Forward Relaying for Hybrid FSO/RF Networks. J. Opt. Commun. Netw. 2019, 11, 267–281. [Google Scholar] [CrossRef]
- Sharma, S.; Madhukumar, A.S.; Swaminathan, R. Effect of Pointing Errors on the Performance of Hybrid FSO/RF Networks. IEEE Access 2019, 7, 131418–131434. [Google Scholar] [CrossRef]
- Sharma, S.; Madhukumar, A.; Swaminathan, R. Asymptotic Analysis of Switching-Based Hybrid FSO/RF System with DF-Relaying. In Proceedings of the 2019 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam, 6–8 November 2019; pp. 425–430. [Google Scholar] [CrossRef]
- Sharma, S.; Madhukumar, A.; Ramabadran, S. Performance of Dual-Hop Hybrid FSO/RF System with Pointing Errors Optimization. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Tachikawa, W.; Suetsuna, A.; Wang, M.; Yoshii, K.; Shimamoto, S. Applying PDMA for Ground-HAPS Uplink Network with Hybrid FSO/RF Communication. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 26–29 March 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Lyu, X.; Zheng, P.; Ge, N. Analysis of Switching Probability for Hybrid FSO/RF Channels Under High-altitude Platform. In Proceedings of the 2022 International Symposium on Wireless Communication Systems (ISWCS), Hangzhou, China, 19–22 October 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Usman, M.; Althunibat, S.; Qaraqe, K. Mobility Dependent Hybrid RF/FSO Backhaul in UAV Assisted Cellular Networks. In Proceedings of the 2020 IEEE 25th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Pisa, Italy, 14–16 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Nafees, M.; Huang, S.; Thompson, J.; Safari, M. Leveraging Hybrid UAV Relays in Adverse Weather for FSO Link Capacity Maximization. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 178–183. [Google Scholar] [CrossRef]
- Nafees, M.; Thompson, J.; Hopgood, J. Enhancing Millimeter Wave Link Capacity in Adverse Weather Using Hybrid UAV Relays. In Proceedings of the 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), Washington, DC, USA, 7–10 October 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Niu, Z.; Yang, H.; Yao, Q.; Wu, B.; Yin, S.; Zhang, J. Flexible FSO/RF Aerial Topology Reconstruction for High Network Throughput in Dynamic Atmosphere Condition. In Proceedings of the 2024 IEEE International Conference on Communications Workshops (ICC Workshops), Denver, CO, USA, 9–13 June 2024; pp. 1280–1285. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, S.; Wang, Y.; Wang, X.; Song, X.; Li, X.; Li, J. 3D Trajectory Optimization for UAV-Assisted Hybrid FSO/RF Network with Moving Obstacles. IEEE Trans. Aerosp. Electron. Syst. 2024, 61, 1692–1704. [Google Scholar] [CrossRef]
- Singh, D.; R, S. On the Performance of Hovering UAV-Based FSO Communication System. In Proceedings of the 2021 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Hyderabad, India, 13–16 December 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Singh, D.; Reddy, C.S.S.; Swaminathan, R. Hovering UAV-Based FSO Communications with DF Relaying: A Performance Analysis. In Proceedings of the 2023 National Conference on Communications (NCC), Guwahati, India, 23–26 February 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.; Yuan, H.; Yang, K.; Kang, J.; Wang, P.; Niyato, D. Joint UAV Trajectory and Power Allocation With Hybrid FSO/RF for Secure Space–Air–Ground Communications. IEEE Internet Things J. 2024, 11, 31407–31421. [Google Scholar] [CrossRef]
- Liu, Y.C.; Wu, Z.Y.; Song, P.C. Online Trajectory Optimization for UAV-Assisted Hybrid FSO/RF Network With QoS-Guarantee. IEEE Commun. Lett. 2023, 27, 1357–1361. [Google Scholar] [CrossRef]
- Erdogan, E.; Altunbas, I.; Kabaoglu, N.; Yanikomeroglu, H. A Cognitive Radio Enabled RF/FSO Communication Model for Aerial Relay Networks: Possible Configurations and Opportunities. IEEE Open J. Veh. Technol. 2021, 2, 45–53. [Google Scholar] [CrossRef]
- Singh, R.; Rawat, M.; Jaiswal, A. Mixed FSO/RF SIMO SWIPT Decode-and-Forward Relaying Systems. In Proceedings of the 2020 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 19–24 July 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zhao, S.; Tang, H.; Shao, L. Performance analysis of weather-dependent satellite–terrestrial network with rate adaptation hybrid free-space optical and radio frequency link. Int. J. Satell. Commun. Netw. 2022, 41, 357–373. [Google Scholar] [CrossRef]
- Vishwakarma, N.; R, S. Capacity Analysis of Adaptive Combining for Hybrid FSO/RF Satellite Communication System. In Proceedings of the 2021 National Conference on Communications (NCC), Kanpur, India, 27–30 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Swaminathan, R.; Sharma, S.; MadhuKumar, A.S. Performance Analysis of HAPS-Based Relaying for Hybrid FSO/RF Downlink Satellite Communication. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- R, S.; Sharma, S.; Vishwakarma, N.; Madhukumar, A.S. HAPS-Based Relaying for Integrated Space–Air–Ground Networks With Hybrid FSO/RF Communication: A Performance Analysis. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1581–1599. [Google Scholar] [CrossRef]
- Bithas, P.S.; Nistazakis, H.E.; Katsis, A.; Yang, L. Hybrid FSO/RF Communications in Space–Air–Ground Integrated Networks: A Reduced Overhead Link Selection Policy. Electronics 2024, 13, 806. [Google Scholar] [CrossRef]
- Shah, S.; Siddharth, M.; Vishwakarma, N.; Swaminathan, R.; Madhukumar, A.S. Adaptive-Combining-Based Hybrid FSO/RF Satellite Communication With and Without HAPS. IEEE Access 2021, 9, 81492–81511. [Google Scholar] [CrossRef]
- Jain, S.; Sengar, S.; Singh, S.P. An Assessment of the Operation of Hybrid FSO/RF DF Relayed Satellite Communication Network Using Pulse Position Modulation. In Proceedings of the 2024 First International Conference on Electronics, Communication and Signal Processing (ICECSP), New Delhi, India, 8–10 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Jain, S.; Sengar, S.; Singh, S.P. Evaluation of the Hybrid FSO/RF DF Relayed Satellite Communication Network Operation. In Proceedings of the 2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT), Greater Noida, India, 29–31 August 2024; Volume 1, pp. 1–5. [Google Scholar] [CrossRef]
- Li, X.; Li, Y. Diversity Scheme based FSO/RF Hybrid Systems in SAGIN with Interference and Outdated CSI. In Proceedings of the 2023 3rd International Conference on Electronic Information Engineering and Computer Communication (EIECC), Wuhan, China, 22–24 December 2023; pp. 22–27. [Google Scholar] [CrossRef]
- Samy, R.; Yang, H.C.; Rakia, T.; Alouini, M.S. Ergodic Capacity Analysis of Satellite Communication Systems With SAG-FSO/SH-FSO/RF Transmission. IEEE Photonics J. 2022, 14, 1–9. [Google Scholar] [CrossRef]
- Samy, R.; Yang, H.C.; Rakia, T.; Alouini, M.S. Space-Air-Ground FSO Networks for High-Throughput Satellite Communications. IEEE Commun. Mag. 2022, 60, 82–87. [Google Scholar] [CrossRef]
- Samy, R.; Yang, H.C.; Rakia, T.; Alouini, M.S. Hybrid SAG-FSO/SH-FSO/RF Transmission for Next-Generation Satellite Communication Systems. IEEE Trans. Veh. Technol. 2023, 72, 14255–14267. [Google Scholar] [CrossRef]
- Samy, R.; Yang, H.C.; Rakia, T.; Alouini, M.S. Symbol Error Rate Analysis of Satellite Communication Systems with SAG-FSO/SH-FSO/RF Transmission. In Proceedings of the GLOBECOM 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 431–436. [Google Scholar] [CrossRef]
- Samy, R.; Ahmed, H.; Yang, H.C.; Alouini, M.S. Effect of Correlated Turbulence on Integrated SAG-FSO/SH-FSO/RF Transmission for Satellite Communications. In Proceedings of the 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Valencia, Spain, 2–5 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Samy, R.; Yang, H.C.; Rakia, T.; Alouini, M.S. Reliable Terabits Feeder Link for Very High-Throughput Satellite Systems with SAG-FSO Transmission. IEEE Wirel. Commun. 2024, 31, 112–116. [Google Scholar] [CrossRef]
- Samy, R.; Yang, H.C. Switching-Based HAP Relays with Hybrid SAG-FSO/RF Transmission over Correlated Turbulence for Satellite Communications. In Proceedings of the 2024 14th International Conference on Electrical Engineering (ICEENG), Cairo, Egypt, 21–23 May 2024; pp. 346–351. [Google Scholar] [CrossRef]
- Hariq, S.H.; Iyer Seshadri, R. Integration of LoS MIMO RF and Optical Links via HAPS for High-Capacity Satellite Feeder Links. In Proceedings of the 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), Washington, DC, USA, 7–10 October 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Yahia, O.B.; Erdogan, E.; Kurt, G.K. HAPS-Assisted Hybrid RF-FSO Multicast Communications: Error and Outage Analysis. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 140–152. [Google Scholar] [CrossRef]
- Dang, K.D.; Le, H.D.; Nguyen, C.T.; Pham, A.T. Resource allocation for hybrid FSO/RF satellite-assisted multiple backhauled UAVs over Starlink networks. IEICE Commun. Express 2024, 13, 52–55. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, J.; Bennis, M.; Ko, Y.C. Integrating LEO Satellites and Multi-UAV Reinforcement Learning for Hybrid FSO/RF Non-Terrestrial Networks. IEEE Trans. Veh. Technol. 2023, 72, 3647–3662. [Google Scholar] [CrossRef]
- Samy, R.; Yang, H.C.; Rakia, T.; Alouini, M.S. Parallel FSO-RF Transmissions for High-Throughput Remote Access with Satellite Communications. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 9417–9426. [Google Scholar] [CrossRef]
- Guo, Q.; Kato, N.; Tang, F. Energy Efficient Routing for Fso-Rf Space-Air-Ground Integrated Network: A Deep Reinforcement Learning Approach. In Proceedings of the 2023 8th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC), Beijing, China, 3–5 November 2023; pp. 254–258. [Google Scholar] [CrossRef]
- Guo, Q.; Tang, F.; Kato, N. Hybrid Routing in FSO/RF Space-Air-Ground Integrated Network. In Proceedings of the GLOBECOM 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 6585–6590. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Le, H.D.; Dang, N.T.; Pham, A.T. Average Transmission Rate and Outage Performance of Relay-Assisted Satellite Hybrid FSO/RF Systems. In Proceedings of the 2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 14–16 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Le, H.D.; Dang, N.T.; Pham, A.T. On the Design of Rate Adaptation for Relay-Assisted Satellite Hybrid FSO/RF Systems. IEEE Photonics J. 2022, 14, 1–11. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Le, H.D.; Pham, A.T. On the Design of RIS–UAV Relay-Assisted Hybrid FSO/RF Satellite–Aerial–Ground Integrated Network. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 757–771. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Song, X.; Shao, L.; Li, H. RIS Assisted UAV for Weather-Dependent Satellite Terrestrial Integrated Network With Hybrid FSO/RF Systems. IEEE Photonics J. 2023, 15, 1–17. [Google Scholar] [CrossRef]
- Guo, K.; Wu, M.; Li, X.; Mumtaz, S.; Charalampos, T. Joint Optimization for RIS-Aided Hybrid FSO SAGINs with Deep Reinforcement Learning. In Proceedings of the GLOBECOM 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 4–8 December 2023; pp. 431–436. [Google Scholar] [CrossRef]
- Wu, M.; Guo, K.; Lin, Z.; Li, X.; An, K.; Huang, Y. Joint Optimization Design of RIS-Assisted Hybrid FSO SAGINs Using Deep Reinforcement Learning. IEEE Trans. Veh. Technol. 2024, 73, 3025–3040. [Google Scholar] [CrossRef]
- Guo, K.; Wu, M.; Li, X.; Lin, Z.; Tsiftsis, T.A. Joint Trajectory and Beamforming Optimization for Federated DRL-Aided Space-Aerial-Terrestrial Relay Networks With RIS and RSMA. IEEE Trans. Wirel. Commun. 2024, 23, 18456–18471. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Nguyen, C.T.; Le, H.D.; Pham, A.T. TCP Performance Over Satellite-Based Hybrid FSO/RF Vehicular Networks: Modeling and Analysis. IEEE Access 2021, 9, 108426–108440. [Google Scholar] [CrossRef]
- Kotha, S.; Ibrahim, M.; Abhi, S.; Badrudduza, A.S.M. On Physical Layer Security Analysis of Hybrid RF/FSO Wireless Networks over k–u/GG Channels with Pointing Error Impairments. In Proceedings of the 2023 IEEE International Conference on Telecommunications and Photonics (ICTP), Dhaka, Bangladesh, 21–23 December 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Shakir, W.M.R. Physical Layer Security Performance Analysis of Hybrid FSO/RF Communication System. IEEE Access 2021, 9, 18948–18961. [Google Scholar] [CrossRef]
- Bankey, V.; Sharma, S.; R, S.; Madhukumar, A.S. Physical Layer Security of HAPS-Based Space–Air–Ground-Integrated Network With Hybrid FSO/RF Communication. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4680–4688. [Google Scholar] [CrossRef]
- Juel, N.; Badrudduza, A.S.M.; Islam, S.M.R.; Islam, S.; Kundu, M.; Mowla, M.; Kwak, K.S. Impact of Aperture Averaging and Antenna Correlation on the Secrecy Outage Performance over Mixed RF-FSO Cooperative System under Simultaneous RF and FSO Eavesdropping Attempts. In Proceedings of the 2021 IEEE Region 10 Symposium (TENSYMP), Jeju, Republic of Korea, 23–25 August 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Jain, B.; Yadav, D.; Singh, R.K.; Ranjan, R.; Singh, S.P. Secrecy Outage Probability of NOMA Network under Amplify and Forward Scheme. In Proceedings of the 2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT), Dehradun, India, 17–18 March 2023; pp. 192–196. [Google Scholar] [CrossRef]
- Márton, M.; Ovseník, L.; Turán, J.; Špes, M.; Urbanskỳ, J. Comparison of microstrip patch antennas with different materials operating on 2.46 ghz for fso/rf hybrid system. In Proceedings of the 2019 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 26–29 May 2019; pp. 1–4. [Google Scholar]
- Abadi, M.M.; Ghassemlooy, Z.; Smith, D.; Ng, W.P. A report on H-FSO/RF antenna measurement for outdoor applications. In Proceedings of the 2013 2nd International Workshop on Optical Wireless Communications (IWOW), Newcastle Upon Tyne, UK, 21 October 2013; pp. 118–122. [Google Scholar] [CrossRef]
- Abadi, M.M.; Ghassemlooy, Z.; Zvanovec, S.; Smith, D.; Bhatnagar, M.R.; Wu, Y. Dual Purpose Antenna for Hybrid Free Space Optics/RF Communication Systems. J. Light. Technol. 2016, 34, 3432–3439. [Google Scholar] [CrossRef]
- El Harrak, A.Y.; Chakkour, M.; Chaoui, F.; Ahmed, B.A.; Chaari, M.Z.; Aghzout, O. Enhancing FSO/RF Link Performance Under Extreme Weather Conditions: A Novel Hybrid System with a High-Directivity Parabolic Reflector Antenna. In Proceedings of the 2024 International Conference on Computing, Internet of Things and Microwave Systems (ICCIMS), Gatineau, QC, Canada, 29–31 July 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Thajeel, T.G.; Abdulhassan, A. A Hybrid Load Balancing Scheme for Software Defined Networking. In Proceedings of the 2021 2nd Information Technology To Enhance e-Learning and Other Application (IT-ELA), Baghdad, Iraq, 28–29 December 2021; pp. 106–112. [Google Scholar] [CrossRef]
- AS/NZS IEC 60825-1:2014; Safety of Laser Products—Equipment Classification and Requirements. Standards New Zealand: Wellington, New Zealand, 2014. Available online: https://www.standards.govt.nz/shop/asnzs-iec-60825-12014 (accessed on 3 March 2025).
- Zhao, H.; Alouini, M.S. On the Transmission Probabilities in Quantum Key Distribution Systems Over FSO Links. IEEE Trans. Commun. 2021, 69, 429–442. [Google Scholar] [CrossRef]
- Garlinska, M.; Pregowska, A.; Gutowska, I.; Osial, M.; Szczepanski, J. Experimental Study of the Free Space Optics Communication System Operating in the 8–12 µm Spectral Range. Electronics 2021, 10, 875. [Google Scholar] [CrossRef]
Properties | RF | FSO |
---|---|---|
Wavelength [31] | 1 mm–100 m | 10 nm–1600 nm |
Spectrum regulation [16] | Yes | No |
Transmission and receiver [38] | Antenna | LD/LED and PD |
Noise [37] | Electromagnetic field | Ambient light |
Main propagation effect [16] | Attenuation, fading | Attenuation, turbulence |
Obstacle Penetration [30] | High | None |
Environmental resilience [30] | High | Low–medium |
Data Rates [16] | Mbps–Gbps | Gbps–Tbps |
Safety [39] | Electromagnetic field radiations | Eye and skin-safe |
Security [16] | Moderate to high | High |
Cost [19] | Generally low | Moderate to high |
Deployment Flexibility [16] | High | Moderate (LoS needed) |
Reliability (various conditions) [37] | High | Moderate |
Category | Reference | Objective | Simulation Models | Contribution |
---|---|---|---|---|
Hard Switching | Kirubakaran & Selvaraj [46] | Analyze an adaptive order M-PSK modulation performance | GG/- | Provides closed-form expressions for OP, ASER, and RF interference. |
Vishwakarma & Swaminathan [76] | Investigate adaptive modulation performance | Malaga/--- with PE | Derives asymptotic SEP expression. | |
Nath et al. [77] | Evaluate BPSK modulation in a shared-RF scheme | GG/NM | Presents closed-form OP and BER expressions for cognitive RF. | |
Nath et al. [78] | Examine a cognitive RF system in the shared-RF model | GG/NM | Highlights cognitive RF performance improvements. | |
Nath et al. [79] | Compare shared RF and on-demand RF schemes | GG/NM with PE | Identifies optimal rate and power adaptation and validates benefits of cognitive RF. | |
Soft Switching | Shrivastava et al. [70] | New switching scheme proposal | Negative Exp./Rayleigh | Introduces a shared-RF and On-demand RF system. |
Vishwakarma & Swaminathan [56] | Analyze the EC performance in the hybrid system with adaptive switching model | Malaga/- with PE | Optimize the optimum switching threshold SNR and beamwidth values for the best EC performance | |
Gupta et al. [52] | Investigate an adaptive combining hybrid system with HD and IM/DD techniques | F-distribution/NM | HD is more reliable than IM/DD in every turbulence conditions | |
Mehta & Sengar [81] | Simulate OP equations for modified-switching system | GG/Exponential | Optimize SNR threshold values for the system to increase reliability | |
Roumelas et al. [44] | Demonstrates a triple hybrid FSO/RF/mmW system | Negative exponential/Rayleigh/Weibull | The triple hybrid system can achieve OP probability. | |
Relay | Sun et al. [83] | Evaluate AF/DF relaying in hybrid FSO/RF under IM/DD | GG/-F with PE | Derives the asymptotic expression of OP, BER, capacity, and EC performance. |
Ninos et al. [41] | Investigate a full-duplex relaying with parallel hybrid systems under RSI, IQI | GG/NM with PE | Derives the asymptotic expression of OP in a high SNR regime. | |
Bag et al. [45,74] | Proposed hybrid systems with DF relaying. | GG/Rayleigh | The system improves reliability performance via relay switching. | |
Liang et al. [91] | Evaluate a DF relaying hybrid FSO/RF-mmW system | Log-Normal fading/NM | Confirm the DF relay can improve system reliability | |
Sharma et al. [86] | Analysis of IRS-assisted hybrid FSO/RF system | GG/Rayleigh with PE | the IRS-assisted systems enhance BER and EC performance | |
Verma et al. [87] | Present a dual-hop DF relay and IRS system with H-ARQ | GG-Rician and Rayleigh with PE | the protocols and IRS can compensate atmosphere effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phuchortham, S.; Sabit, H. A Survey on Free-Space Optical Communication with RF Backup: Models, Simulations, Experience, Machine Learning, Challenges and Future Directions. Sensors 2025, 25, 3310. https://doi.org/10.3390/s25113310
Phuchortham S, Sabit H. A Survey on Free-Space Optical Communication with RF Backup: Models, Simulations, Experience, Machine Learning, Challenges and Future Directions. Sensors. 2025; 25(11):3310. https://doi.org/10.3390/s25113310
Chicago/Turabian StylePhuchortham, Sabai, and Hakilo Sabit. 2025. "A Survey on Free-Space Optical Communication with RF Backup: Models, Simulations, Experience, Machine Learning, Challenges and Future Directions" Sensors 25, no. 11: 3310. https://doi.org/10.3390/s25113310
APA StylePhuchortham, S., & Sabit, H. (2025). A Survey on Free-Space Optical Communication with RF Backup: Models, Simulations, Experience, Machine Learning, Challenges and Future Directions. Sensors, 25(11), 3310. https://doi.org/10.3390/s25113310