Effect of Prenatal Yoga versus Moderate-Intensity Walking on Cardiorespiratory Adaptation to Acute Psychological Stress: Insights from Non-Invasive Beat-to-Beat Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heart Rate Variabity Parameters
2.2. Phase Synchronization Indices
- The function HILBERT compute the so-called discrete-time analytic signal X with X = Xr + I × Xi in a narrow frequency band such that Xi is the Hilbert transform of the real vector Xr. To obtain a clear physical interpretation that is given only for narrow band signals, we use the band-pass filtered time series.
- In the next step, the function ANGLE is used to calculate the phase of the resulting signal X at every time point with the function.
- Subsequently, the difference between two given phase vectors for the interpolated bivariate data series, e.g., between heart rate and systolic blood pressure, can be calculated.
- The distribution of phase difference Ψ(ti) is quantified by the synchronization index γ defined as
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sengupta, P. Health Impacts of Yoga and Pranayama: A State-of-the-Art Review. Int. J. Prev. Med. 2012, 3, 444–458. [Google Scholar] [PubMed]
- Clarke, T.C.; Black, L.I.; Stussman, B.J.; Barnes, P.M.; Nahin, R.L. Trends in the Use of Complementary Health Approaches among Adults: United States, 2002–2012; National Health Statistics Reports, no 79; National Center for Health Statistics: Hyattsville, MD, USA, 2015. [Google Scholar]
- Clarke, T.C.; Barnes, P.M.; Black, L.I.; Stussman, B.J.; Nahin, R.L. Use of Yoga, Meditation, and Chiropractors among U.S. Adults Aged 18 and over; NCHS Data Brief No. 325; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Washington, DC, USA, 2018. Available online: https://www.cdc.gov/nchs/data/databriefs/db325-h.pdf (accessed on 7 October 2023).
- Babbar, S.; Shyken, J. Yoga in Pregnancy. Clin. Obs. Gynecol. 2016, 59, 600–612. [Google Scholar] [CrossRef]
- Evenson, K.R.; Wen, F. National trends in self-reported physical activity and sedentary behaviors among pregnant women: NHANES 1999–2006. Prev Med. 2010, 50, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Syed, H.; Slayman, T.; DuChene Thoma, K. ACOG Committee Opinion No. 804: Physical Activity and Exercise during Pregnancy and the Postpartum Period. Obs. Gynecol. 2021, 137, 375–376. [Google Scholar] [CrossRef] [PubMed]
- Rong, L.; Dai, L.J.; Ouyang, Y.Q. The effectiveness of prenatal yoga on delivery outcomes: A meta-analysis. Complement. Ther. Clin. Pract. 2020, 39, 101157. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S. The Efficacy of Prenatal Yoga on Labor Pain: A Systematic Review and Meta-analysis. Altern. Ther. Health Med. 2023, 29, 121–125. [Google Scholar]
- Villar-Alises, O.; Martinez-Miranda, P.; Martinez-Calderon, J. Prenatal Yoga-Based Interventions May Improve Mental Health during Pregnancy: An Overview of Systematic Reviews with Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 1556. [Google Scholar] [CrossRef]
- Corrigan, L.; Moran, P.; McGrath, N.; Eustace-Cook, J.; Daly, D. The characteristics and effectiveness of pregnancy yoga interventions: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2022, 22, 250. [Google Scholar] [CrossRef]
- Kwon, R.; Kasper, K.; London, S.; Haas, D.M. A systematic review: The effects of yoga on pregnancy. Eur. J. Obs. Gynecol. Reprod. Biol. 2020, 250, 171–177. [Google Scholar] [CrossRef]
- Pascoe, M.C.; Bauer, I.E. A systematic review of randomised control trials on the effects of yoga on stress measures and mood. J. Psychiatr. Res. 2015, 68, 270–282. [Google Scholar] [CrossRef]
- Lučovnik, M.; Pravst, T.; Vesenjak Dinevski, I.; Žebeljan, I.; Dinevski, D. Yoga during pregnancy: A systematic review. Zdr. Vestn. 2021, 90, 150–158. [Google Scholar] [CrossRef]
- Satyapriya, M.; Nagendra, H.R.; Nagarathna, R.; Padmalatha, V. Effect of integrated yoga on stress and heart rate variability in pregnant women. Int. J. Gynaecol. Obs. 2009, 104, 218–222. [Google Scholar] [CrossRef]
- Ekholm, E.M.; Erkkola, R.U. Autonomic cardiovascular control in pregnancy. Eur. J. Obs. Gynecol. Reprod. Biol. 1996, 64, 29–36. [Google Scholar] [CrossRef]
- Fu, Q.; Levine, B.D. Autonomic circulatory control during pregnancy in humans. Semin. Reprod. Med. 2009, 27, 330–337. [Google Scholar] [CrossRef]
- Lackner, H.K.; Papousek, I.; Batzel, J.J.; Roessler, A.; Scharfetter, H.; Hinghofer-Szalkay, H. Phase synchronization of hemodynamic variables and respiration during mental challenge. Int. J. Psychophysiol. 2011, 79, 401–409. [Google Scholar] [CrossRef]
- Sharifi-Heris, Z.; Rahmani, A.M.; Axelin, A.; Rasouli, M.; Bender, M. Heart Rate Variability and Pregnancy Complications: Systematic Review. Interact. J. Med. Res. 2023, 12, e44430. [Google Scholar] [CrossRef]
- Žebeljan, I.; Lučovnik, M.; Dinevski, D.; Lackner, H.K.; Moertl, M.G.; Vesenjak Dinevski, I.; Mujezinovic, F. Effect of Prenatal Yoga on Heart Rate Variability and Cardio-Respiratory Synchronization: A Prospective Cohort Study. J. Clin. Med. 2022, 11, 5777. [Google Scholar] [CrossRef]
- Benvenutti, M.J.; Alves, E.D.S.; Michael, S.; Ding, D.; Stamatakis, E.; Edwards, K.M. A single session of hatha yoga improves stress reactivity and recovery after an acute psychological stress task-A counterbalanced, randomized-crossover trial in healthy individuals. Complement. Ther. Med. 2017, 35, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Maheshwarananda, P.S. The System Yoga in Daily Life; Harmony for Body, Mind and Soul; Ibera Verlag/European University Press: Vienna, Austria, 2000; Available online: https://www.yogaindailylife.org/system/en/ (accessed on 11 April 2023).
- Pahor, D. The Code of Ethical Conduct of the University of Maribor/Kodeks etičnega Ravnanja Univerze V Mariboru. Acta Med.-Biotechnol. 2022, 14, 7–9. [Google Scholar] [CrossRef]
- Fortin, J.; Habenbacher, W.; Heller, A.; Hacker, A.; Grüllenberger, R.; Innerhofer, J.; Passath, H.; Wagner, C.H.; Haitchi, G.; Flotzinger, D.; et al. Non-invasive beat-to-beat cardiac output monitoring by an improved method of transthoracic bioimpedance measurement. Comput. Biol. Med. 2006, 36, 1185–1203. [Google Scholar] [CrossRef] [PubMed]
- Lackner, H.K.; Eglmaier, M.T.W.; Hackl-Wimmer, S.; Paechter, M.; Rominger, C.; Eichen, L.; Rettenbacher, K.; Walter-Laager, C.; Papousek, I. How to Use Heart Rate Variability: Quantification of Vagal Activity in Toddlers and Adults in Long-Term ECG. Sensors 2020, 20, 5959. [Google Scholar] [CrossRef] [PubMed]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Posadzki, P.; Kuzdzal, A.; Lee, M.S.; Ernst, E. Yoga for Heart Rate Variability: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Appl. Psychophysiol. Biofeedback 2015, 40, 239–249. [Google Scholar] [CrossRef]
- Chu, I.H.; Wu, W.L.; Lin, I.M.; Chang, Y.K.; Lin, Y.J.; Yang, P.C. Effects of Yoga on Heart Rate Variability and Depressive Symptoms in Women: A Randomized Controlled Trial. J. Altern. Complement. Med. 2017, 23, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Hewett, Z.L.; Pumpa, K.L.; Smith, C.A.; Fahey, P.P.; Cheema, B.S. Effect of a 16-week Bikram yoga program on heart rate variability and associated cardiovascular disease risk factors in stressed and sedentary adults: A randomized controlled trial. BMC Complement. Altern. Med. 2017, 17, 226. [Google Scholar] [CrossRef]
- Khattab, K.; Khattab, A.A.; Ortak, J.; Richardt, G.; Bonnemeier, H. Iyengar yoga increases cardiac parasympathetic nervous modulation among healthy yoga practitioners. Evid.-Based Complement. Altern. Med. 2007, 4, 511–517. [Google Scholar] [CrossRef]
- Sarang, P.; Telles, S. Effects of two yoga based relaxation techniques on heart rate variability (HRV). Int. J. Stress Manag. 2006, 13, 460. [Google Scholar] [CrossRef]
- Melville, G.W.; Chang, D.; Colagiuri, B.; Marshall, P.W.; Cheema, B.S. Fifteen minutes of chair-based yoga postures or guided meditation performed in the office can elicit a relaxation response. Evid.-Based Complement. Altern. Med. 2012, 2012, 501986. [Google Scholar] [CrossRef]
- Lackner, H.K.; Goswami, N.; Hinghofer-Szalkay, H.; Papousek, I.; Scharfetter, H.; Furlan, R.; Schwaberger, G. Effects of Stimuli on Cardiovascular Reactivity Occurring at Regular Intervals During Mental Stress. J. Psychophysiol. 2010, 24, 48–60. [Google Scholar] [CrossRef]
- Immanuel, S.; Teferra, M.N.; Baumert, M.; Bidargaddi, N. Heart Rate Variability for Evaluating Psychological Stress Changes in Healthy Adults: A Scoping Review. Neuropsychobiology 2023, 82, 187–202. [Google Scholar] [CrossRef]
Memory Task 1st Trimester | Recovery 1st Trimester | Memory Task 2nd Trimester | Recovery 2nd Trimester | Memory Task 3rd Trimester | Recovery 3rd Trimester | |
---|---|---|---|---|---|---|
Δ Heart rate (bpm) * | ||||||
Yoga | −7.7 ± 5.3 | −6.4 ± 4.6 | −8.5 ± 6.1 | −6.0 ± 5.9 | −8.3 ± 7.1 | −6.6 ± 6.9 |
Controls | −5.0 ± 5.8 | −2.6 ± 5.3 | −2.6 ± 4.4 | −2.5 ± 4.1 | −2.0 ± 4.7 | −2.0 ± 4.6 |
Δ SDNN (ms) * | ||||||
Yoga | −0.2 ± 11.7 | 6.2 ± 12.5 | 5.0 ± 11.9 | 5.3 ± 12.7 | 1.5 ± 9.4 | 6.0 ± 18.6 |
Controls | −1.5 ± 9.1 | 1.4 ± 8.2 | 0.3 ± 7.7 | 1.3 ± 9.4 | 0.0 ± 12.1 | 0.2 ± 10.6 |
Δ RMSSD (ms) * | ||||||
Yoga | 3.3 ± 6.1 | 7.7 ± 11.2 | 6.7 ± 9.2 | 7.0 ± 11.0 | 7.0 ± 9.5 | 7.1 ± 10.3 |
Controls | 4.0 ± 6.8 | 1.1 ± 8.6 | 2.3 ± 7.7 | 2.5 ± 8.8 | 1.6 ± 8.7 | 2.1 ± 7.9 |
Δ ln(LF/HF) (-) | ||||||
Yoga | −0.34 ± 0.54 | −0.13 ± 0.81 | −0.24 ± 0.77 | −0.22 ± 0.95 | −0.20 ± 0.66 | 0.18 ± 0.76 |
Controls | −0.17 ± 0.70 | 0.02 ± 0.60 | −0.02 ± 0.85 | −0.15 ± 0.73 | −0.08 ± 0.71 | −0.06 ± 0.80 |
Memory Task 1st Trimester | Recovery 1st Trimester | Memory Task 2nd Trimester | Recovery 2nd Trimester | Memory Task 3rd Trimester | Recovery 3rd Trimester | |
---|---|---|---|---|---|---|
ΔSBP (mmHg) | ||||||
Yoga | −2.8 ± 7.9 | −1.1 ± 7.0 | −1.4 ± 12.0 | 0.5 ± 7.4 | 3.5 ± 11.8 | 0.6 ± 8.3 |
Controls | −5.1 ± 10.7 | 1.3 ± 8.4 | 0.8 ± 7.3 | 0.1 ± 7.7 | −1.5 ± 9.8 | 0.0 ± 8.5 |
ΔMAP (mmHg) | ||||||
Yoga | −1.8 ± 7.3 | −0.3 ± 6.2 | −0.0 ± 10.3 | 1.3 ± 6.4 | 2.7 ± 9.4 | 1.3 ± 7.6 |
Controls | −3.9 ± 7.3 | 0.8 ± 6.6 | 0.8 ± 6.4 | 0.8 ± 6.8 | −0.3 ± 8.0 | −0.2 ± 7.7 |
ΔDBP (mmHg) | ||||||
Yoga | −1.3 ± 7.9 | 0.2 ± 6.9 | 0.3 ± 10.1 | 1.5 ± 5.7 | 1.8 ± 8.2 | 1.5 ± 7.2 |
Controls | −3.4 ± 6.3 | 0.2 ± 6.4 | 0.7 ± 6.9 | 1.2 ± 6.8 | 0.4 ± 7.7 | −0.1 ± 8.3 |
ΔRF (min−1) | ||||||
Yoga | 0.0 ± 2.3 | 0.2 ± 1.7 | 0.3 ± 1.5 | −0.1 ± 1.5 | −0.4 ± 1.9 | −0.7 ± 1.5 |
Controls | 0.0 ± 2.4 | 0.4 ± 1.9 | 0.0 ± 1.8 | 0.3 ± 1.5 | 0.5 ± 2.2 | 0.1 ± 1.7 |
ΔγSBP × RR (-) * | ||||||
Yoga | 0.10 ± 0.19 | −0.03 ± 0.21 | −0.01 ± 0.26 | 0.05 ± 0.23 | 0.03 ± 0.18 | 0.04 ± 0.18 |
Controls | −0.03 ± 0.20 | −0.12 ± 0.24 | 0.00 ± 0.16 | 0.00 ± 0.20 | 0.03 ± 0.18 | −0.01 ± 0.18 |
ΔγRF × RR (-) | ||||||
Yoga | 0.09 ± 0.28 | 0.01 ± 0.22 | 0.03 ± 0.20 | 0.06 ± 0.20 | −0.05 ± 0.18 | −0.01 ± 0.23 |
Controls | 0.03 ± 0.18 | −0.03 ± 0.18 | 0.05 ± 0.16 | 0.01 ± 0.19 | 0.05 ± 0.20 | −0.01 ± 0.16 |
ΔγRF × SBP (-) | ||||||
Yoga | 0.11 ± 0.31 | −0.03 ± 0.24 | −0.06 ± 0.25 | 0.06 ± 0.26 | −0.06 ± 0.22 | −0.04 ± 0.27 |
Controls | −0.06 ± 0.24 | −0.13 ± 0.30 | 0.03 ± 0.16 | −0.01 ± 0.22 | 0.05 ± 0.22 | 0.00 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lučovnik, M.; Lackner, H.K.; Žebeljan, I.; Moertl, M.G.; Dinevski, I.V.; Mahlmann, A.; Dinevski, D. Effect of Prenatal Yoga versus Moderate-Intensity Walking on Cardiorespiratory Adaptation to Acute Psychological Stress: Insights from Non-Invasive Beat-to-Beat Monitoring. Sensors 2024, 24, 1596. https://doi.org/10.3390/s24051596
Lučovnik M, Lackner HK, Žebeljan I, Moertl MG, Dinevski IV, Mahlmann A, Dinevski D. Effect of Prenatal Yoga versus Moderate-Intensity Walking on Cardiorespiratory Adaptation to Acute Psychological Stress: Insights from Non-Invasive Beat-to-Beat Monitoring. Sensors. 2024; 24(5):1596. https://doi.org/10.3390/s24051596
Chicago/Turabian StyleLučovnik, Miha, Helmut K. Lackner, Ivan Žebeljan, Manfred G. Moertl, Izidora Vesenjak Dinevski, Adrian Mahlmann, and Dejan Dinevski. 2024. "Effect of Prenatal Yoga versus Moderate-Intensity Walking on Cardiorespiratory Adaptation to Acute Psychological Stress: Insights from Non-Invasive Beat-to-Beat Monitoring" Sensors 24, no. 5: 1596. https://doi.org/10.3390/s24051596
APA StyleLučovnik, M., Lackner, H. K., Žebeljan, I., Moertl, M. G., Dinevski, I. V., Mahlmann, A., & Dinevski, D. (2024). Effect of Prenatal Yoga versus Moderate-Intensity Walking on Cardiorespiratory Adaptation to Acute Psychological Stress: Insights from Non-Invasive Beat-to-Beat Monitoring. Sensors, 24(5), 1596. https://doi.org/10.3390/s24051596