A Design Method and Application of Meta-Surface-Based Arbitrary Passband Filter for Terahertz Communication
Abstract
:1. Introduction
2. Meta-Surface-Based Arbitrary Bandwidth SSIGW Filter Design Method
3. Physical Realization of Arbitrary Bandwidth SSIGW Filter Based on Meta-Surface
3.1. Design of SSIGW
3.2. Design and Analysis of Ultra-Wideband Bandpass Filter
3.3. Design and Analysis of Meta-Surface Wideband Bandstop Filter
3.4. Results and Comparisons
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caroline, B.E.; Sagadevan, K.; Danasegaran, S.K.; Kumar, S. Characterization of a Pentagonal CSRR Bandpass Filter for Terahertz Applications. J. Electron. Mater. 2022, 51, 5405–5416. [Google Scholar] [CrossRef]
- Ruan, J.F.; Lan, F.; Wang, L.; Ji, S.W. Ultra-wideband THz metamaterial filter with steep cut-off. J. Electromagn. Waves Appl. 2021, 35, 431–440. [Google Scholar] [CrossRef]
- Wang, F.; Pavlidis, V.F.; Yu, N. Miniaturized SIW bandpass filter based on TSV technology for THz applications. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 423–426. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Z.; Liu, Y.; Lu, Q.; Yin, X.; Yang, Y. Wideband substrate integrated waveguide bandpass filter based on 3-D ICs. IEEE Trans. Components Packag. Manuf. Technol. 2019, 9, 728–735. [Google Scholar] [CrossRef]
- Attia, H.; Sorkherizi, M.S.; Kishk, A.A. 60 GHz slot antenna array based on ridge gap waveguide technology enhanced with dielectric superstrate. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–4. [Google Scholar]
- Li, T.; Chen, Z.N. Wideband Sidelobe-Level Reduced Ka -Band Metasurface Antenna Array Fed by Substrate-Integrated Gap Waveguide Using Characteristic Mode Analysis. IEEE Trans. Antennas Propag. 2020, 68, 1356–1365. [Google Scholar] [CrossRef]
- Abbas, M.A.; Cengiz, M.F.; Allam, A.M.M.A.; Fawzy, D.E.; Elhennawy, H.M.; Sree, M.F.A. A Novel Circular Reconfigurable Metasurface-based Compact UWB Hybrid Coupler for Ku-band Applications. IEEE Access 2022, 10, 129781–129790. [Google Scholar] [CrossRef]
- Sifat, S.M.; Shams, S.I.; Kishk, A.A. Millimeter-Wave Ferrite Circulator Integrated on Gap Waveguide Technology. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 1151–1154. [Google Scholar] [CrossRef]
- Yin, X.; Zhu, Z.; Yang, Y.; Ding, R. Effectiveness of p+ layer in mitigating substrate noise induced by through-silicon via for microwave applications. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 687–689. [Google Scholar] [CrossRef]
- Qian, L.; Xia, Y.; He, X.; Qian, K.; Wang, J. Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1336–1343. [Google Scholar] [CrossRef]
- Yin, X.; Zhu, Z.; Liu, Y.; Lu, Q.; Liu, X.; Yang, Y. Ultra-compact TSV-based L-C low-pass filter with stopband up to 40 GHz for microwave application. IEEE Trans. Microw. Theory Tech. 2019, 67, 738–745. [Google Scholar] [CrossRef]
- Hu, S.; Wang, L.; Xiong, Y.-Z.; Lim, T.G.; Zhang, B.; Shi, J.; Yuan, X. TSV technology for millimeter-wave and terahertz design and applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 260–267. [Google Scholar] [CrossRef]
- Wang, F.; Ke, L.; Yin, X.; Yu, N.; Yang, Y. Compact TSV-based hairpin bandpass filter for thz applications. IEEE Access 2021, 9, 132078–132083. [Google Scholar] [CrossRef]
- Li, W.; Liu, Z.; Qian, W.; Wang, Z.; Wang, W.; Zhao, Y.; Zhang, X. Modeling of the RF coaxial TSV configuration inside the silicon interposer with embedded cooling cavity. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 3–10. [Google Scholar] [CrossRef]
- Hou, D.; Lin, S.; Shen, D.; Yuan, H.; Wang, B.; Zhang, X. An Integrated Substrate Gap Waveguide Filter Metalens Antenna for 6G THz Band. In Proceedings of the 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, China, 13–15 November 2022; pp. 1–3. [Google Scholar]
- Minnis, B.J. Classes of Sub-Miniature Microwave Printed Circuit Filters with Arbitrary Passband and Stopband Widths. IEEE Trans. Microw. Theory Tech. 1982, 30, 1893–1900. [Google Scholar] [CrossRef]
- Ma, Y.H.; Yuan, Y.; Yuan, W.T.; Wu, W.W.; Yuan, N.C. A Novel Method to Design Stub-Loaded Microstrip Filters with Arbitrary Passband Based on the Reflection Theory and Monte Carlo Method. Radio Eng. 2019, 28, 136–146. [Google Scholar] [CrossRef]
- Luo, S.; Mei, P.; Zhang, Y.; Pedersen, G.F.; Zhang, S. Decoupling of Dual-Polarized Antenna Arrays Using Non-Resonant Metasurface. Sensors 2023, 23, 152. [Google Scholar] [CrossRef]
- Khan, M.S.; Khan, S.; Khan, O.; Aqeel, S.; Gohar, N.; Dalarsson, M. Mutual Coupling Reduction in MIMO DRA through Metamaterials. Sensors 2023, 23, 7720. [Google Scholar] [CrossRef]
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjöland, H.; Tufvesson, F. 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proc. IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- John, H.L. Through-Silicon Vias: Mechanical, Thermal, and Electrical Behaviors. In Through-Silicon vias for 3D Integration (Reading Version); Publishing House: Beijing, China, 2014; pp. 157–203. [Google Scholar]
- Maslovski, S.I.; Morgado, T.A.; Silveirinha, M.G.; Kaipa, C.S.R.; Yakovlev, A.B. Generalized additional boundary conditions for wire media. New J. Phys. 2010, 12, 113047. [Google Scholar] [CrossRef]
- Yang, F.; Rahmat-Samii, Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Trans. Antennas Propag. 2003, 51, 2936–2946. [Google Scholar] [CrossRef]
- Sun, S. A Dual-Band Bandpass Filter Using a Single Dual-Mode Ring Resonator. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 298–300. [Google Scholar] [CrossRef]
- Matsuo, M.; Yabuki, H.; Makimoto, M. Dual-mode stepped-impedance ring resonator for bandpass filter applications. IEEE Trans. Microw. Theory Tech. 2001, 49, 1235–1240. [Google Scholar] [CrossRef]
- Holloway, C.L.; Hufford, G.A. Internal inductance and conductor loss associated with the ground plane of a microstrip line. IEEE Trans. Electromagn. Compat. 1997, 39, 73–78. [Google Scholar] [CrossRef]
- Stellari, F.; Lacaita, A.L. New formulas of interconnect capacitances based on results of conformal mapping method. IEEE Trans. Electron Devices 2000, 47, 222–231. [Google Scholar] [CrossRef]
- Katti, G.; Stucchi, M.; Velenis, D.; Soree, B.; Meyer, K.D.; Dehaene, W. Temperature-Dependent Modeling and Characterization of Through-Silicon Via Capacitance. IEEE Electron Device Lett. 2011, 32, 563–565. [Google Scholar] [CrossRef]
- Chan, Y.C.; Basu, N.; Chen, T.-W.; Tsai, Y.-T.; Lin, H.-Y.; Chen, S.-C.; Lee, M.-H.; Liao, M.-H. The Analysis of Multiwall Carbon Nanotubes as Through Silicon Via by Equivalent Circuit Model at Different Operating Temperatures in Multilayers Stacking Scheme. IEEE Trans. Electron Devices 2023, 70, 3360–3364. [Google Scholar] [CrossRef]
- Lin, C.H.; Cheng, Y.H. A THz Waveguide Bandpass Filter Design Using an Artificial Neural Network. Micromachines 2022, 13, 841. [Google Scholar] [CrossRef]
- Chang, C.C.; Huang, L.; Nogan, J.; Chen, H.T. Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures. APL Photonics 2018, 3, 051602. [Google Scholar] [CrossRef]
- Huang, Y.; He, Q.C.; Zhang, D.P.; Kanamori, Y. Switchable band-pass filter for terahertz waves using VO2-based metamaterial integrated with silicon substrate. Opt. Rev. 2021, 28, 92–98. [Google Scholar] [CrossRef]
- Niharika, N.; Singh, S.; Kumar, P. Multifunctional metasurface based bandstop and bandpass filters for terahertz radiation. Optik 2022, 253, 168551. [Google Scholar] [CrossRef]
T | p | r | R | |||
---|---|---|---|---|---|---|
5 | 120 | 7 | 50 | 55 | 25 | 25 |
Resonant Frequency | Calculated | Simulated |
---|---|---|
0.128 | 0.130 | |
– | 0.133 | |
0.224 | 0.234 | |
– | 0.241 | |
0.151 | 0.144 | |
0.191 | 0.191 | |
0.220 | 0.224 |
Parameters | Values | Parameters | Values | Parameters | Values |
---|---|---|---|---|---|
1738 | 352 | 125 | |||
98 | 20 | 7 | |||
90 | 8 | 8 | |||
83 | 3 | 8 | |||
9 | 5 | 200 | |||
9 | 8 | 50 |
Filters | Type | Method | Center Frequency [THz] | FBW [%] | Insertion Loss [dB] | Group Delay [ns] |
---|---|---|---|---|---|---|
[1] | Meta-material | Sim. | 7 | 22.85 | - - | 3.67 |
[2] | Meta-material | Sim. | 0.125 | 65 | - - | - - |
[3] | SIW | Meas. | 0.331 | 15.4 | 1.5 | - - |
[4] | SIW | Sim. | 0.160 | 12.5 | 1.5 | 2.5 ± 1.5 |
[13] | Hairpin | Sim. | 0.500 | 16 | 1.5 | - - |
[31] | CNC milling | Meas. | 0.292 | 14.64 | 3 | - - |
[32] | Meta-material | Sim. | 1 | 18 | 3 | - - |
[33] | Meta-material | Meas. | 0.6 | - - | >3 | - - |
[34] | Meta-material | Sim. | 2.37 | 59 | 3 | - - |
This work 1 | SSIGW | Sim. | 0.151 | 6.9 | 0.68 | 0.119 ± 0.048 |
This work 2 | SSIGW | Sim. | 2.215 | 6.1 | 1.29 | 0.007 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, D.; Wang, L.; Lin, Q.; Xu, X.; Li, Y.; Luo, Z.; Chen, H. A Design Method and Application of Meta-Surface-Based Arbitrary Passband Filter for Terahertz Communication. Sensors 2024, 24, 1291. https://doi.org/10.3390/s24041291
Hou D, Wang L, Lin Q, Xu X, Li Y, Luo Z, Chen H. A Design Method and Application of Meta-Surface-Based Arbitrary Passband Filter for Terahertz Communication. Sensors. 2024; 24(4):1291. https://doi.org/10.3390/s24041291
Chicago/Turabian StyleHou, Da, Lihui Wang, Qiuhua Lin, Xiaodong Xu, Yin Li, Zhiyong Luo, and Hao Chen. 2024. "A Design Method and Application of Meta-Surface-Based Arbitrary Passband Filter for Terahertz Communication" Sensors 24, no. 4: 1291. https://doi.org/10.3390/s24041291
APA StyleHou, D., Wang, L., Lin, Q., Xu, X., Li, Y., Luo, Z., & Chen, H. (2024). A Design Method and Application of Meta-Surface-Based Arbitrary Passband Filter for Terahertz Communication. Sensors, 24(4), 1291. https://doi.org/10.3390/s24041291