Wide-Angle Beam Steering Closed-Form Pillbox Antenna Fed by Substrate-Integrated Waveguide Horn for On-the-Move Satellite Communications
Abstract
:1. Introduction
2. Flat Panel Antenna Design
2.1. Design Principles
2.2. Final Design
2.2.1. Radiating Disc
2.2.2. Feeding Structure
3. Antenna Performance and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ionescu, L.; Rusu-Casandra, A.; Bira, C.; Tatomirescu, A.; Tramandan, I.; Scagnoli, R.; Istriteanu, D.; Popa, A.-E. Development of the Romanian Radar Sensor for Space Surveillance and Tracking Activities. Sensors 2022, 22, 3546. [Google Scholar] [CrossRef] [PubMed]
- Gui, G.; Liu, M.; Tang, F.; Kato, N.; Adachi, F. 6G: Opening New Horizons for Integration of Comfort, Security, and Intelligence. IEEE Wirel. Commun. 2020, 27, 126–132. [Google Scholar] [CrossRef]
- Zhou, H.; Pal, A.; Mehta, A.; Nakano, H.; Modigliana, A.; Arampatzis, T.; Howland, P. Reconfigurable Phased Array Antenna Consisting of High-Gain High-Tilt Circularly Polarized Four-Arm Curl Elements for Near Horizon Scanning Satellite Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2324–2328. [Google Scholar] [CrossRef]
- Bariah, L.; Mohjazi, L.; Muhaidat, S.; Sofotasios, P.C.; Kurt, G.K.; Yanikomeroglu, H.; Dobre, O.A. A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks. IEEE Access 2020, 8, 174792–174820. [Google Scholar] [CrossRef]
- Chu, D.; Mao, Y.; Li, H.; Bie, H.; Zhou, Y. Dual-Polarized Multi-Beam Fixed-Frequency Beam Scanning Leaky-Wave Antenna. Sensors 2023, 23, 5070. [Google Scholar] [CrossRef] [PubMed]
- Aljaloud, K.; Sultan, K.; Ikram, M.; Alqahtani, A.H.; Abbasi, Q.H.; Hussain, R. Low-Profile Antenna System for Cognitive Radio in IoST CubeSat Applications. Sensors 2023, 23, 4782. [Google Scholar] [CrossRef]
- Soumya, A.; Mohan, C.K.; Cenkeramaddi, L.R. Recent Advances in mmWave-Radar-Based Sensing, Its Applications, and Machine Learning Techniques: A Review. Sensors 2023, 23, 8901. [Google Scholar] [CrossRef]
- Moon, S.-M.; Cho, J.; Lee, H.L. High Gain Flat-Panel mmWave Antenna Array. Sensors 2023, 23, 9433. [Google Scholar] [CrossRef]
- Merino-Fernandez, I.; Khemchandani, S.L.; del Pino, J.; Saiz-Perez, J. Phased Array Antenna Analysis Workflow Applied to Gateways for LEO Satellite Communications. Sensors 2022, 22, 9406. [Google Scholar] [CrossRef]
- Elrahman, S.I.A.; Elkhawaga, A.M.; Hussein, A.H.; Shaalan, A.E.A. Linear Antenna Array Sectorized Beam Scanning Approaches Using Element Position Perturbation in the Azimuth Plane. Sensors 2023, 23, 6557. [Google Scholar] [CrossRef]
- Ikram, M.; Sultan, K.S.; Abbosh, A.M.; Nguyen-Trong, N. Sub-6 GHz and mm-Wave 5G Vehicle-to-Everything (5G-V2X) MIMO Antenna Array. IEEE Access 2022, 10, 49688–49695. [Google Scholar] [CrossRef]
- Zetterstrom, O.; Hamarneh, R.; Quevedo-Teruel, O. Experimental Validation of a Metasurface Luneburg Lens Antenna Implemented With Glide-Symmetric Substrate-Integrated Holes. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 698–702. [Google Scholar] [CrossRef]
- Sultan, K.; Abdullah, H.; Abdallah, E.; El-Hennawy, H. MOM/GA-Based Virtual Array for Radar Systems. Sensors 2020, 20, 713. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.-H.; Wong, H. Millimeter-Wave High-Gain Magneto-Electric Dipole Antenna Array with Pillbox Corporate Feed Network. IEEE Trans. Antennas Propag. 2021, 69, 5631–5639. [Google Scholar] [CrossRef]
- Xu, R.; Gao, S.S.; Li, J.; Wei, K.; Luo, Q. A Reconfigurable Dual-Band Dual-Circularly Polarized Antenna for Vehicle Global Navigation Satellite System Application. IEEE Trans. Veh. Technol. 2020, 69, 11857–11867. [Google Scholar] [CrossRef]
- Yang, H.-Z.; Qu, S.-W. High-Gain Millimeter-Wave Beam Scanning Transmitarray Antenna. Sensors 2023, 23, 4709. [Google Scholar] [CrossRef]
- Wen, L.; Gao, S.; Luo, Q.; Hu, W.; Yin, Y. Wideband Dual Circularly Polarized Antenna for Intelligent Transport Systems. IEEE Trans. Veh. Technol. 2020, 69, 5193–5202. [Google Scholar] [CrossRef]
- Xu, J.; Hong, W.; Jiang, Z.H.; Zhang, H. Low-Profile Circular Patch Array Fed by Slotted Substrate Integrated Waveguide. IEEE Trans. Antennas Propag. 2019, 67, 960–970. [Google Scholar] [CrossRef]
- Hamberger, G.F.; Spath, S.; Siart, U.; Eibert, T.F. A Mixed Circular/Linear Dual-Polarized Phased Array Concept for Automotive Radar—Planar Antenna Designs and System Evaluation at 78 GHz. IEEE Trans. Antennas Propag. 2019, 67, 1562–1572. [Google Scholar] [CrossRef]
- He, G.; Gao, X.; Sun, L.; Zhang, R. A Review of Multibeam Phased Array Antennas as LEO Satellite Constellation Ground Station. IEEE Access 2021, 9, 147142–147154. [Google Scholar] [CrossRef]
- Lou, T.; Yang, X.-X.; Cao, Q.-D.; Gao, S. A Low Profile Circularly Polarized Beam Scanning Patch Array Fed by Parallel Plate Waveguide. IEEE Trans. Antennas Propag. 2022, 70, 7384–7392. [Google Scholar] [CrossRef]
- Chen, C.-N.; Hung, L.-C.; Tang, T.-C.; Chao, W.-P.; Chen, C.-Y.; Chuang, P.-H.; Lin, G.-Y.; Liao, W.-J.; Nien, Y.-H.; Huang, W.-C.; et al. 38-GHz Phased Array Transmitter and Receiver Based on Scalable Phased Array Modules with Endfire Antenna Arrays for 5G MMW Data Links. IEEE Trans. Microw. Theory Tech. 2021, 69, 980–999. [Google Scholar] [CrossRef]
- Gray, D.; Lu, J.W.; Thiel, D. Electronically steerable Yagi-Uda microstrip patch antenna array. IEEE Trans. Antennas Propag. 1998, 46, 605–608. [Google Scholar] [CrossRef]
- Maqsood, M.; Gao, S.; Brown, T.W.C.; Unwin, M.; Steenwijk, R.d.V.V.; Xu, J.D.; Underwood, C.I. Low-Cost Dual-Band Circularly Polarized Switched-Beam Array for Global Navigation Satellite System. IEEE Trans. Antennas Propag. 2014, 62, 1975–1982. [Google Scholar] [CrossRef]
- Chaloun, T.; Boccia, L.; Arnieri, E.; Fischer, M.; Valenta, V.; Fonseca, N.J.G.; Waldschmidt, C. Electronically Steerable Antennas for Future Heterogeneous Communication Networks: Review and Perspectives. IEEE J. Microwaves 2022, 2, 545–581. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Z.; Tang, S.; Shen, S.; Chiu, C.-Y.; Murch, R. A Highly Pattern-Reconfigurable Planar Antenna With 360° Single- and Multi-Beam Steering. IEEE Trans. Antennas Propag. 2022, 70, 6490–6504. [Google Scholar] [CrossRef]
- Hu, W.; Arrebola, M.; Cahill, R.; Encinar, J.A.; Fusco, V.; Gamble, H.S.; Alvarez, Y.; Las-Heras, F. 94 GHz Dual-Reflector Antenna with Reflectarray Subreflector. IEEE Trans. Antennas Propag. 2009, 57, 3043–3050. [Google Scholar] [CrossRef]
- Eid, A.; Hester, J.G.D.; Tentzeris, M.M. Rotman Lens-Based Wide Angular Coverage and High-Gain Semipassive Architecture for Ultralong Range mm-Wave RFIDs. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1943–1947. [Google Scholar] [CrossRef]
- Gao, Y.; Khaliel, M.; Zheng, F.; Kaiser, T. Rotman Lens Based Hybrid Analog–Digital Beamforming in Massive MIMO Systems: Array Architectures, Beam Selection Algorithms and Experiments. IEEE Trans. Veh. Technol. 2017, 66, 9134–9148. [Google Scholar] [CrossRef]
- Mirmozafari, M.; Tursunniyaz, M.; Luyen, H.; Booske, J.H.; Behdad, N. A Multibeam Tapered Cylindrical Luneburg Lens. IEEE Trans. Antennas Propag. 2021, 69, 5060–5065. [Google Scholar] [CrossRef]
- Ao, T.; Pan, Y.; Dong, Y. Low-Profile Dual-Polarized Luneburg Lens Based on TE/TM Surface Wave Modes. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1862–1866. [Google Scholar] [CrossRef]
- Paul, T.; Harinath, M.; Garg, S.K.; Aich, S.; Kumar, A.; Trivedi, J.; Kumar, A.; Patel, M.K.; Rao, C.V.N.; Jyoti, R. Miniaturized High-Power Beam Steering Network Using Novel Nonplanar Waveguide Butler Matrix. IEEE Microw. Wirel. Components Lett. 2021, 31, 678–681. [Google Scholar] [CrossRef]
- Shao, Q.; Chen, F.-C. Design of 2 × 8 Filtering Butler Matrix with Arbitrary Power Distribution. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3527–3531. [Google Scholar] [CrossRef]
- Sun, G.-H.; Wong, H. A Planar Millimeter-Wave Antenna Array with a Pillbox-Distributed Network. IEEE Trans. Antennas Propag. 2020, 68, 3664–3672. [Google Scholar] [CrossRef]
- Cao, Y.; Yan, S.; Li, J.; Chen, J. A Pillbox Based Dual Circularly-Polarized Millimeter-Wave Multi-Beam Antenna for Future Vehicular Radar Applications. IEEE Trans. Veh. Technol. 2022, 71, 7095–7103. [Google Scholar] [CrossRef]
- Tekkouk, K.; Ettorre, M.; Le Coq, L.; Sauleau, R. SIW Pillbox Antenna for Monopulse Radar Applications. IEEE Trans. Antennas Propag. 2015, 63, 3918–3927. [Google Scholar] [CrossRef]
- Wang, C.; Yao, Y.; Cheng, X.; Zhu, Z.; Li, X. A W-Band High-Efficiency Multibeam Circularly Polarized Antenna Array Fed by GGW Butler Matrix. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1130–1134. [Google Scholar] [CrossRef]
- Lee, J.-G.; Lee, J.-H. Low-Profile High-Efficiency Transmitarray Antenna for Beamforming Applications. Electronics 2023, 12, 3178. [Google Scholar] [CrossRef]
- Ettorre, M.; Manzillo, F.F.; Casaletti, M.; Sauleau, R.; Le Coq, L.; Capet, N. Continuous Transverse Stub Array for Ka-Band Applications. IEEE Trans. Antennas Propag. 2015, 63, 4792–4800. [Google Scholar] [CrossRef]
- Ettorre, M.; Sauleau, R.; Le Coq, L. Multi-Beam Multi-Layer Leaky-Wave SIW Pillbox Antenna for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2011, 59, 1093–1100. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Sultan, K.; Ikram, M.; Nguyen-Trong, N. A Multiband Multibeam Antenna for Sub-6 GHz and mm-Wave 5G Applications. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1278–1282. [Google Scholar] [CrossRef]
- Di Paola, C.; Zhao, K.; Zhang, S.; Pedersen, G.F. SIW Multibeam Antenna Array at 30 GHz for 5G Mobile Devices. IEEE Access 2019, 7, 73157–73164. [Google Scholar] [CrossRef]
- Di Paola, C.; Zhang, S.; Zhao, K.; Ying, Z.; Bolin, T.; Pedersen, G.F. Wideband Beam-Switchable 28 GHz Quasi-Yagi Array for Mobile Devices. IEEE Trans. Antennas Propag. 2019, 67, 6870–6882. [Google Scholar] [CrossRef]
- Smierzchalski, M.; Manzillo, F.F.; Del Mastro, M.; Capet, N.; Palacin, B.; Sauleau, R.; Ettorre, M. A Novel Dual-Polarized Continuous Transverse Stub Antenna Based on Corrugated Waveguides—Part II: Experimental Demonstration. IEEE Trans. Antennas Propag. 2021, 69, 1313–1323. [Google Scholar] [CrossRef]
- Tekkouk, K.; Ettorre, M.; Sauleau, R. Multibeam Pillbox Antenna Integrating Amplitude-Comparison Monopulse Technique in the 24 GHz Band for Tracking Applications. IEEE Trans. Antennas Propag. 2018, 66, 2616–2621. [Google Scholar] [CrossRef]
- Tekkouk, K.; Ettorre, M.; Gandini, E.; Sauleau, R. Multibeam Pillbox Antenna with Low Sidelobe Level and High-Beam Crossover in SIW Technology Using the Split Aperture Decoupling Method. IEEE Trans. Antennas Propag. 2015, 63, 5209–5215. [Google Scholar] [CrossRef]
- Gandini, E.; Ettorre, M.; Casaletti, M.; Tekkouk, K.; Le Coq, L.; Sauleau, R. SIW Slotted Waveguide Array with Pillbox Transition for Mechanical Beam Scanning. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1572–1575. [Google Scholar] [CrossRef]
- Ettorre, M.; Sauleau, R.; Le Coq, L.; Bodereau, F. Single-Folded Leaky-Wave Antennas for Automotive Radars at 77 GHz. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 859–862. [Google Scholar] [CrossRef]
L1 | W1 | R1 | R2 | R3 | R4 | Lh | Wh | Sv | dv | Sw | Wst | Sst |
---|---|---|---|---|---|---|---|---|---|---|---|---|
340 | 115 | 111.4 | 157.2 | 155 | 150 | 16 | 12 | 1.5 | 1 | 5 | 4 | 4 |
Angle of Rotation ω | −20° | −10° | 0° | 10° | 20° |
---|---|---|---|---|---|
Simulated Gain (dBi) | 24 | 25.5 | 26.5 | 25.5 | 24 |
Measured Gain (dBi) | 20.21 | 22.1 | 23.2 | 22.5 | 20.18 |
Ref. | Antenna Height λ0 | BW (GHz) | Beam Coverage (Degree) | Measured Gain (dBi) | SLL (dB) | |
---|---|---|---|---|---|---|
@ BS | @ MSA | |||||
[35] | 0.08 | 23.9–24.9 | 17.7 | −15 | −8.8 | |
[40] | 0.08 | 23.5–25.7 | 23.8 | −12 | −16 | |
[39] | 4.39 | 27.5–31.0 | 28.9 | −32 | −11 | |
[36] | 0.08 | 23.5–24.6 | 25 | −15 | −10 | |
[21] | 0.32 | 10.2–13.9 | 19.6 | −30 | −15.6 | |
[45] | 9 | 28.5–31.0 | 31.3 | −20 | −10 | |
[46] | 0.1 | 23.8–24.3 | 21.6 | −23 | −10 | |
[47] | 0.1 | 23.8–24.4 | 24.2 | −24 | −11 | |
[48] | 0.1 | 23.5–24.5 | 22 | −20 | −15 | |
[49] | 0.25 | 74–78 | 24 | −25 | −10 | |
This Work | 0.3 | 19.0–20.4 | 23.2 | −20 | −17.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikram, M.; Sultan, K.; Mobashsher, A.T.; Moosazadeh, M.; Abbosh, A. Wide-Angle Beam Steering Closed-Form Pillbox Antenna Fed by Substrate-Integrated Waveguide Horn for On-the-Move Satellite Communications. Sensors 2024, 24, 732. https://doi.org/10.3390/s24030732
Ikram M, Sultan K, Mobashsher AT, Moosazadeh M, Abbosh A. Wide-Angle Beam Steering Closed-Form Pillbox Antenna Fed by Substrate-Integrated Waveguide Horn for On-the-Move Satellite Communications. Sensors. 2024; 24(3):732. https://doi.org/10.3390/s24030732
Chicago/Turabian StyleIkram, Muhammad, Kamel Sultan, Ahmed Toaha Mobashsher, Mahdi Moosazadeh, and Amin Abbosh. 2024. "Wide-Angle Beam Steering Closed-Form Pillbox Antenna Fed by Substrate-Integrated Waveguide Horn for On-the-Move Satellite Communications" Sensors 24, no. 3: 732. https://doi.org/10.3390/s24030732
APA StyleIkram, M., Sultan, K., Mobashsher, A. T., Moosazadeh, M., & Abbosh, A. (2024). Wide-Angle Beam Steering Closed-Form Pillbox Antenna Fed by Substrate-Integrated Waveguide Horn for On-the-Move Satellite Communications. Sensors, 24(3), 732. https://doi.org/10.3390/s24030732