Fractal Analysis of Electrodermal Activity for Emotion Recognition: A Novel Approach Using Detrended Fluctuation Analysis and Wavelet Entropy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset and Emotional States Labeling
2.2. Signal Processing and Fractal Analysis
2.2.1. Linear Preprocessing
2.2.2. Windowing and Detrending
2.2.3. Fractal Analysis
- DFA:
- (a)
- The detrended signal of length is integrated to obtain the cumulative sum as shown below in Equation (3).
- (b)
- The integrated series is divided into non-overlapping segments of equal length , where n is chosen logarithmically spaced scales from 1 to L/4. In each segment, the local trend is estimated by least-squares regression fitting of a linear polynomial of order 1 as . The fitted polynomial is then subtracted from the segment to obtain the detrended fluctuation below:
- (c)
- The root mean square of the detrended fluctuations is calculated over all segments of length to obtain the average fluctuation function :
- (d)
- This procedure is repeated over a range of segment lengths to characterize the detrended fluctuations at different time scales.
- (e)
- If the average fluctuation function against the segment length on log–log scales exhibits fractal scaling behavior, the relationship between and n follows a power law:
- 2.
- Hurst Exponent Estimation:
- 3.
- Wavelet Entropy:
- (a)
- The detrended signal is decomposed using the continuous wavelet transform (CWT):
- (b)
- The wavelet coefficients are normalized to obtain the wavelet energy density:
- (c)
- The wavelet entropy is then calculated as the Shannon entropy of the wavelet energy density:
2.3. Cross-Correlation Analysis
2.4. Statistical Analysis
2.5. Machine Learning Analysis
2.5.1. Model Selection and Hyperparameter Tuning
2.5.2. Evaluation Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Picard, R.W. Affective Computing: From Laughter to IEEE. IEEE Trans. Affect. Comput. 2010, 1, 11–17. [Google Scholar] [CrossRef]
- Calvo, R.A.; D’Mello, S. Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications. IEEE Trans. Affect. Comput. 2010, 1, 18–37. [Google Scholar] [CrossRef]
- Pantic, M.; Rothkrantz, L.J.M. Toward an Affect-Sensitive Multimodal Human-Computer Interaction. Proc. IEEE 2003, 91, 1370–1390. [Google Scholar] [CrossRef]
- Depression and Other Common Mental Disorders. Available online: https://www.who.int/publications/i/item/depression-global-health-estimates (accessed on 18 July 2024).
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Chon, K.H. Innovations in Electrodermal Activity Data Collection and Signal Processing: A Systematic Review. Sensors 2020, 20, 479. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D. Review: Electrodermal Responses: What Happens in the Brain. Neuroscientist 2002, 8, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Kreibig, S.D. Autonomic Nervous System Activity in Emotion: A Review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef] [PubMed]
- Valenza, G.; Scilingo, E.P. Autonomic Nervous System Dynamics for Mood and Emotional-State Recognition: Significant Advances in Data Acquisition, Signal Processing and Classification; Series in BioEngineering; Springer International Publishing: Cham, Switzerland, 2014; ISBN 978-3-319-02638-1. [Google Scholar]
- Raheel, A.; Majid, M.; Alnowami, M.; Anwar, S.M. Physiological Sensors Based Emotion Recognition While Experiencing Tactile Enhanced Multimedia. Sensors 2020, 20, 4037. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Mandelbrot, B.B. The Fractal Geometry of Nature; WH Freeman: New York, NY, USA, 1982; Volume 1. [Google Scholar]
- Boucsein, W. Electrodermal Activity; Springer: Boston, MA, USA, 2012; ISBN 978-1-4614-1125-3. [Google Scholar]
- Dawson, M.E.; Schell, A.M.; Filion, D.L. The Electrodermal System. In Handbook of Psychophysiology; Cacioppo, J.T., Tassinary, L.G., Berntson, G.G., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 217–243. ISBN 978-1-107-41578-2. [Google Scholar]
- Cacioppo, J.T.; Tassinary, L.G.; Berntson, G.G. Handbook of Psychophysiology, 3rd ed.; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-511-27907-2. [Google Scholar]
- Benedek, M.; Kaernbach, C. A Continuous Measure of Phasic Electrodermal Activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, J.; Watson, D.; Jones, R.; Rowe, M.A. Guide for Analysing Electrodermal Activity & Skin Conductance Responses for Psychological Experiments. CTIT Tech. Rep. Ser. 2013, 2, 6–15. [Google Scholar]
- Healey, J.A.; Picard, R.W. Detecting Stress During Real-World Driving Tasks Using Physiological Sensors. IEEE Trans. Intell. Transport. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Kim, J.; Andre, E. Emotion Recognition Based on Physiological Changes in Music Listening. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 2067–2083. [Google Scholar] [CrossRef]
- Agrafioti, F.; Hatzinakos, D.; Anderson, A.K. ECG Pattern Analysis for Emotion Detection. IEEE Trans. Affect. Comput. 2012, 3, 102–115. [Google Scholar] [CrossRef]
- Boashash, B. Time Frequency Signal Analysis and Processing: A Comprehensive Reference, 2nd ed.; EURASIP and Academic Press series in signal and image processing; Academic Press: Amsterdam, The Netherlands; Cambridge, MA, USA, 2016; ISBN 978-0-12-398499-9. [Google Scholar]
- Nardelli, M.; Greco, A.; Sebastiani, L.; Scilingo, E.P. ComEDA: A New Tool for Stress Assessment Based on Electrodermal Activity. Comput. Biol. Med. 2022, 150, 106144. [Google Scholar] [CrossRef]
- Veeranki, Y.R.; Diaz, L.R.M.; Swaminathan, R.; Posada-Quintero, H.F. Non-Linear Signal Processing Methods for Automatic Emotion Recognition Using Electrodermal Activity. IEEE Sens. J. 2024, 24, 8079–8093. [Google Scholar] [CrossRef]
- Mercado Diaz, L.R.; Rao Veeranki, Y.; Marmolejo-Ramos, F.; Posada-Quintero, H. EDA-Graph: Graph Signal Processing of Electrodermal Activity for Emotional States Detection. TechRxiv, 2023; in press. [Google Scholar] [CrossRef] [PubMed]
- Falconer, K.J. Fractal Geometry: Mathematical Foundations and Applications, 3rd ed.; Wiley: Chichester, UK, 2014; ISBN 978-1-119-94239-9. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.N.; Hausdorff, J.M.; Ivanov, P.C.; Peng, C.-K.; Stanley, H.E. Fractal Dynamics in Physiology: Alterations with Disease and Aging. Proc. Natl. Acad. Sci. USA 2002, 99, 2466–2472. [Google Scholar] [CrossRef]
- Peng, C.-K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic Organization of DNA Nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [PubMed]
- Ihlen, E.A.F. Introduction to Multifractal Detrended Fluctuation Analysis in Matlab. Front. Physiol. 2012, 3, 141. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Ivanov, P.C.; Chen, Z.; Carpena, P.; Eugene Stanley, H. Effect of Trends on Detrended Fluctuation Analysis. Phys. Rev. E 2001, 64, 011114. [Google Scholar] [CrossRef] [PubMed]
- Eke, A.; Hermán, P.; Bassingthwaighte, J.; Raymond, G.; Percival, D.; Cannon, M.; Balla, I.; Ikrényi, C. Physiological Time Series: Distinguishing Fractal Noises from Motions. Pflug. Arch.-Eur. J. Physiol. 2000, 439, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Hardstone, R.; Poil, S.-S.; Schiavone, G.; Jansen, R.; Nikulin, V.V.; Mansvelder, H.D.; Linkenkaer-Hansen, K. Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations. Front. Physiol. 2012, 3, 450. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Castellini, C.; van den Broek, E.L.; Albu-Schaeffer, A.; Schwenker, F. A Dataset of Continuous Affect Annotations and Physiological Signals for Emotion Analysis. Sci. Data 2019, 6, 196. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Wagner, M.; Castellini, C.; Van Den Broek, E.L.; Stulp, F.; Schwenker, F. A Functional Data Analysis Approach for Continuous 2-D Emotion Annotations. In Web Intelligence; IOS Press: Amsterdam, The Netherlands, 2019; Volume 17, pp. 41–52. [Google Scholar] [CrossRef]
- Sharma, K.; Castellini, C.; Stulp, F.; Van Den Broek, E.L. Continuous, Real-Time Emotion Annotation: A Novel Joystick-Based Analysis Framework. IEEE Trans. Affect. Comput. 2020, 11, 78–84. [Google Scholar] [CrossRef]
- Russell, J.A. A Circumplex Model of Affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Posner, J.; Russell, J.A.; Peterson, B.S. The Circumplex Model of Affect: An Integrative Approach to Affective Neuroscience, Cognitive Development, and Psychopathology. Dev. Psychopathol. 2005, 17, 715–734. [Google Scholar] [CrossRef] [PubMed]
- Kuppens, P.; Dejonckheere, E.; Kalokerinos, E.K.; Koval, P. Some Recommendations on the Use of Daily Life Methods in Affective Science. Affect. Sci. 2022, 3, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ali, A.E.; Hanjalic, A.; Cesar, P. Few-Shot Learning for Fine-Grained Emotion Recognition Using Physiological Signals. IEEE Trans. Multimed. 2023, 25, 3773–3787. [Google Scholar] [CrossRef]
- Ganapathy, N.; Veeranki, Y.R.; Kumar, H.; Swaminathan, R. Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network. J. Med. Syst. 2021, 45, 49. [Google Scholar] [CrossRef]
- Campanharo, A.S.L.O.; Ramos, F.M. Hurst Exponent Estimation of Self-Affine Time Series Using Quantile Graphs. Phys. A Stat. Mech. Its Appl. 2016, 444, 43–48. [Google Scholar] [CrossRef]
- Delignieres, D.; Ramdani, S.; Lemoine, L.; Torre, K.; Fortes, M.; Ninot, G. Fractal Analyses for ‘Short’ Time Series: A Re-Assessment of Classical Methods. J. Math. Psychol. 2006, 50, 525–544. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.A.; Havlin, S.; Bunde, A. Detecting Long-Range Correlations with Detrended Fluctuation Analysis. Phys. A Stat. Mech. Its Appl. 2001, 295, 441–454. [Google Scholar] [CrossRef]
- Zhuang, N.; Zeng, Y.; Tong, L.; Zhang, C.; Zhang, H.; Yan, B. Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain. BioMed Res. Int. 2017, 2017, 8317357. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale Entropy Analysis of Biological Signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.; Pang, W.; Jiang, A. Multiscale Increment Entropy: An Approach for Quantifying the Physiological Complexity of Biomedical Time Series. Inf. Sci. 2022, 586, 279–293. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Siegel, S.; Castellan, N.J. Nonparametric Statistics for the Behavioral Sciences, 2nd ed.; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Benjamin, D.J.; Berger, J.O.; Johannesson, M.; Nosek, B.A.; Wagenmakers, E.-J.; Berk, R.; Bollen, K.A.; Brembs, B.; Brown, L.; Camerer, C.; et al. Redefine Statistical Significance. Nat. Hum. Behav. 2017, 2, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Alpaydin, E. Introduction to Machine Learning, 4th ed.; Adaptive computation and machine learning series; The MIT Press: Cambridge, MA, USA, 2020; ISBN 978-0-262-04379-3. [Google Scholar]
- Valenza, G.; Citi, L.; Lanatá, A.; Scilingo, E.P.; Barbieri, R. Revealing Real-Time Emotional Responses: A Personalized Assessment Based on Heartbeat Dynamics. Sci. Rep. 2014, 4, 4998. [Google Scholar] [CrossRef] [PubMed]
- Goshvarpour, A.; Goshvarpour, A.; Abbasi, A. A Predictive Model for Emotion Recognition Based on Individual Characteristics and Autonomic Changes. Basic Clin. Neurosci. 2022, 13, 285–294. [Google Scholar] [CrossRef]
- Zhang, A.; Goosby, B.; Cheadle, J.E. In the Flow of Life: Capturing Affective Socializing Dynamics Using a Wearable Sensor and Intensive Daily Diaries. Socius 2021, 7, 237802312110640. [Google Scholar] [CrossRef]
- Bolpagni, M.; Pardini, S.; Dianti, M.; Gabrielli, S. Personalized Stress Detection Using Biosignals from Wearables: A Scoping Review. Sensors 2024, 24, 3221. [Google Scholar] [CrossRef] [PubMed]
- Govarthan, P.K.; Sriram Kumar, P.; Ganapathy, N.; Agastinose Ronickom, J.F. Deep Learning Framework for Categorical Emotional States Assessment Using Electrodermal Activity Signals. In Studies in Health Technology and Informatics; Mantas, J., Gallos, P., Zoulias, E., Hasman, A., Househ, M.S., Charalampidou, M., Magdalinou, A., Eds.; IOS Press: Amsterdam, The Netherlands, 2023; ISBN 978-1-64368-400-0. [Google Scholar]
- Caravati, E.; Barbeni, F.; Chiarion, G.; Raggi, M.; Mesin, L. Closed-Loop Transcranial Electrical Neurostimulation for Sustained Attention Enhancement: A Pilot Study towards Personalized Intervention Strategies. Bioengineering 2024, 11, 467. [Google Scholar] [CrossRef]
- Deka, B.; Deka, D. Nonlinear Analysis of Heart Rate Variability Signals in Meditative State: A Review and Perspective. BioMed Eng. OnLine 2023, 22, 35. [Google Scholar] [CrossRef] [PubMed]
- Baumert, M.; Javorka, M.; Kabir, M. Joint Symbolic Dynamics for the Assessment of Cardiovascular and Cardiorespiratory Interactions. Philos. Trans. R. Soc. A 2015, 373, 20140097. [Google Scholar] [CrossRef] [PubMed]
- Picard, R.W.; Fedor, S.; Ayzenberg, Y. Multiple Arousal Theory and Daily-Life Electrodermal Activity Asymmetry. Emot. Rev. 2016, 8, 62–75. [Google Scholar] [CrossRef]
- Anandan, M.; Veluswamy, P.; Palanisamy, R. Quantitative ECG Based Emotion State Recognition Using Detrended Fluctuation Analysis. Curr. Dir. Biomed. Eng. 2023, 9, 702–705. [Google Scholar] [CrossRef]
- Rim, B.; Sung, N.-J.; Min, S.; Hong, M. Deep Learning in Physiological Signal Data: A Survey. Sensors 2020, 20, 969. [Google Scholar] [CrossRef]
- Wilhelm, F.H.; Grossman, P. Emotions beyond the Laboratory: Theoretical Fundaments, Study Design, and Analytic Strategies for Advanced Ambulatory Assessment. Biol. Psychol. 2010, 84, 552–569. [Google Scholar] [CrossRef]
- Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A Review of Emotion Recognition Using Physiological Signals. Sensors 2018, 18, 2074. [Google Scholar] [CrossRef] [PubMed]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Jong-Seok, L.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Miranda-Correa, J.A.; Abadi, M.K.; Sebe, N.; Patras, I. AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Trans. Affect. Comput. 2021, 12, 479–493. [Google Scholar] [CrossRef]
- Philip Schmidt, A.R. WESAD (Wearable Stress and Affect Detection) 2018. Available online: https://archive.ics.uci.edu/dataset/465/wesad+wearable+stress+and+affect+detection (accessed on 6 August 2024).
- Yang, P.; Liu, N.; Liu, X.; Shu, Y.; Ji, W.; Ren, Z.; Sheng, J.; Yu, M.; Yi, R.; Zhang, D.; et al. A Multimodal Dataset for Mixed Emotion Recognition. Sci. Data 2024, 11, 847. [Google Scholar] [CrossRef] [PubMed]
Feature | Arousal | Valence |
---|---|---|
DFA Alpha | 0.72 (p < 0.001) | 0.68 (p < 0.001) |
Hurst Exponent | 0.69 (p < 0.001) | 0.65 (p < 0.001) |
Wavelet Entropy | 0.76 (p < 0.001) | 0.71 (p < 0.001) |
Feature | F-Statistic | p-Value |
---|---|---|
Std Wave Entropy Squared | 237.45 | p < 0.001 |
Std Wave Entropy | 225.31 | p < 0.001 |
Min Wave Entropy | 218.76 | p < 0.001 |
Min Wave Entropy Squared | 210.89 | p < 0.001 |
Median Wave Entropy | 205.63 | p < 0.001 |
Algorithm | F1 Score | Accuracy | Precision | Recall |
---|---|---|---|---|
SVM | 0.789 | 82.1% | 0.795 | 0.783 |
RF | 0.798 | 83.5% | 0.810 | 0.786 |
GNB | 0.756 | 79.2% | 0.762 | 0.750 |
LR | 0.775 | 81.0% | 0.780 | 0.770 |
GB | 0.795 | 83.1% | 0.803 | 0.787 |
DT | 0.768 | 80.5% | 0.775 | 0.761 |
XGBoost | 0.802 | 84.3% | 0.815 | 0.789 |
KNN | 0.771 | 80.8% | 0.778 | 0.764 |
Method | Accuracy | F1 Score | Description |
---|---|---|---|
Few-Shot Learning [37] | 58.7% | 0.48 | Deep Siamese network approach for emotion classification |
IsaxEDA [22] | 69.0% | 0.65 | Symbolic approximation-based method |
comEDA [22] | 67.0% | 0.55 | Complexity-based analysis approach |
topEDA [22] | 69.0% | 0.63 | Topological analysis method |
netEDA [22] | 70.0% | 0.64 | Network theory-inspired approach |
EDA-Graph [23] | 75.5% | 0.68 | Graph signal processing approach |
1D-RCNN | 79.8% | 0.762 | 1D-CNN model with residual connections |
Transformer Based | 81.2% | 0.792 | Transformer-based model adapted for time-series analysis |
Traditional EDA Features (BEC) | 68.4% | 0.56 | Classic feature extraction with bagging classifier |
Fractal Analysis (Current Study) | 80.8% | 0.771 | DFA and wavelet entropy-based approach |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercado-Diaz, L.R.; Veeranki, Y.R.; Large, E.W.; Posada-Quintero, H.F. Fractal Analysis of Electrodermal Activity for Emotion Recognition: A Novel Approach Using Detrended Fluctuation Analysis and Wavelet Entropy. Sensors 2024, 24, 8130. https://doi.org/10.3390/s24248130
Mercado-Diaz LR, Veeranki YR, Large EW, Posada-Quintero HF. Fractal Analysis of Electrodermal Activity for Emotion Recognition: A Novel Approach Using Detrended Fluctuation Analysis and Wavelet Entropy. Sensors. 2024; 24(24):8130. https://doi.org/10.3390/s24248130
Chicago/Turabian StyleMercado-Diaz, Luis R., Yedukondala Rao Veeranki, Edward W. Large, and Hugo F. Posada-Quintero. 2024. "Fractal Analysis of Electrodermal Activity for Emotion Recognition: A Novel Approach Using Detrended Fluctuation Analysis and Wavelet Entropy" Sensors 24, no. 24: 8130. https://doi.org/10.3390/s24248130
APA StyleMercado-Diaz, L. R., Veeranki, Y. R., Large, E. W., & Posada-Quintero, H. F. (2024). Fractal Analysis of Electrodermal Activity for Emotion Recognition: A Novel Approach Using Detrended Fluctuation Analysis and Wavelet Entropy. Sensors, 24(24), 8130. https://doi.org/10.3390/s24248130