A Study on the Timing Sensitivity of the Transient Dose Rate Effect on Complementary Metal-Oxide-Semiconductor Image Sensor Readout Circuits
Abstract
:1. Introduction
2. Model and Methodology
2.1. Constructing a Typical Model of the CIS Readout Circuit
2.2. Simulation Methodology of the TDRE
2.2.1. Calculation of the Photocurrent Induced by the TDRE
2.2.2. Analysis of the Processing of Photocurrents Induced by the TDRE
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Degerli, Y.; Besançon, M.; Besson, A.; Claus, G.; Deptuch, G.W.; Duliński, W.; Fourches, N.; Goffe, M.; Himmi, A.; et al. CMOS sensors for the vertex detector of the future international linear collider. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 572, 300–304. [Google Scholar] [CrossRef]
- Prydderch, M.L.; Waltham, N.J.; Turchetta, R.; French, M.J.; Holt, R.; Marshall, A.; Burt, D.; Bell, R.; Pool, P.; Eyles, C.; et al. A 512×512 CMOS Monolithic Active Pixel Sensor with integrated ADCs for space science. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003, 512, 358–367. [Google Scholar] [CrossRef]
- Hopkinson, G.R.; Mohammadzadeh, A.; Harboe-Sorensen, R. Radiation effects on a radiation-tolerant CMOS active pixel sensor. IEEE Trans. Nucl. Sci. 2004, 51, 2753–2762. [Google Scholar] [CrossRef]
- Bogaerts, J.; Dierickx, B.; Meynants, G.; Uwaerts, D. Total dose and displacement damage effects in a radiation-hardened CMOS APS. IEEE Trans. Electron Devices 2003, 50, 84–90. [Google Scholar] [CrossRef]
- Goiffon, V.; Magnan, P.; Saint-pe, O.; Bernard, F.; Rolland, G. Total Dose Evaluation of Deep Submicron CMOS Imaging Technology Through Elementary Device and Pixel Array Behavior Analysis. IEEE Trans. Nucl. Sci. 2008, 55, 3494–3501. [Google Scholar] [CrossRef]
- Watabe, T.; Goto, M.; Ohtake, H.; Maruyama, H.; Tanioka, K. A new readout circuit for an ultrahigh sensitivity CMOS image sensor. IEEE Trans. Consum. Electron. 2002, 48, 394–399. [Google Scholar] [CrossRef]
- Ch, H.-G.; Baudot, J.; Bertolone, G.; Besson, A.; Brogna, A.S.; Colledani, C.; Claus, G.; Masi, R.D.; Degerli, Y.; Dorokhov, A.; et al. CMOS pixel sensor development: A fast read-out architecture with integrated zero suppression. J. Instrum. 2009, 4, P04012. [Google Scholar] [CrossRef]
- Ballin, J.A.; Coath, R.; Crooks, J.P.; Dauncey, P.D.; Magnan, A.M.; Mikami, Y.; Miller, O.D.; Noy, M.; Rajovic, V.; Stanitzki, M.; et al. Design and performance of a CMOS study sensor for a binary readout electromagnetic calorimeter. J. Instrum. 2011, 6, P05009. [Google Scholar] [CrossRef]
- Guerrini, N.; Turchetta, R.; Hoften, G.V.; Henderson, R.; McMullan, G.; Faruqi, A.R. A high frame rate, 16 million pixels, radiation hard CMOS sensor. J. Instrum. 2011, 6, C03003. [Google Scholar] [CrossRef]
- Lee, C.; Cho, G.; Unruh, T.; Hur, S.; Kwon, I. Integrated Circuit Design for Radiation-Hardened Charge-Sensitive Amplifier Survived up to 2 Mrad. Sensors 2020, 20, 2765. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, Y.; Wang, Z.; Chen, W.; Yin, L.; Wang, X.-L.; Nie, X.; Lai, S.; Huang, G.; Wang, M.; et al. Degradation analysis of the pinned photodiode CMOS image sensors induced by energetic proton radiation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023, 1058, 168784. [Google Scholar] [CrossRef]
- Xu, S.; Zou, S.; Han, Y.; Qu, Y.; Zhang, T. Video Monitoring Application of CMOS 4T-PPD-APS Under γ-ray Radiation. Sensors 2019, 19, 359. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Fu, Y.; Wei, Y.; Zuo, Y.; Niu, S.; Zhu, J.; Guo, Y.; Liu, F.; Li, P.; He, C.; et al. Investigation of proton single-event transient in CMOS image sensor. AIP Adv. 2024, 14, 015211. [Google Scholar] [CrossRef]
- Cohen, M.; David, J.P. Radiation-induced dark current in CMOS active pixel sensors. IEEE Trans. Nucl. Sci. 2000, 47, 2485–2491. [Google Scholar] [CrossRef]
- Liu, J.; Barbero, M.; Bhat, S.; Breugnon, P.; Caicedo, I.; Chen, Z.; Degerli, Y.; Godiot-Basolo, S.; Guilloux, F.; Hemperek, T.; et al. Simulations of depleted CMOS sensors for high-radiation environments. J. Instrum. 2017, 12, C11013. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, H.; Zhang, L.; Fu, M. Charge collection and non-ionizing radiation tolerance of CMOS pixel sensors using a 0.18μm CMOS process. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 831, 99–104. [Google Scholar] [CrossRef]
- Marcelot, O.; Goiffon, V.; Rizzolo, S.; Pace, F.; Magnan, P. Dark Current Sharing and Cancellation Mechanisms in CMOS Image Sensors Analyzed by TCAD Simulations. IEEE Trans. Electron Devices 2017, 64, 4985–4991. [Google Scholar] [CrossRef]
- Cao, Z.-x.; Zhou, Y.-f.; Li, Q.-l.; Qin, Q.; Wu, N.-J. Design of Prototype High Speed CMOS Image Sensors. In International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Sensors and Applications; SPIE: Bellingham, WA, USA, 2013; Volume 8908. [Google Scholar] [CrossRef]
- Xu, C.; Xu, J.; Yao, S.; Jing, G.; Gao, Z. Design and Optimization of Four-Transistor Pixel for Low Image Lag CMOS Image Sensor. In International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications; SPIE: Bellingham, WA, USA, 2013; Volume 8907, p. 89070G. [Google Scholar]
- Li, Y.; Guo, Y.; Li, J.; He, C.; Peng, Z.; Liu, J.; Li, R.; Zhao, H.; Chen, W.; Li, Y.; et al. Transient Dose Rate Effect Between System-in-Package and Printed Circuit Boards: A Comparative Experimental Study. IEEE Trans. Nucl. Sci. 2023, 70, 2106–2115. [Google Scholar] [CrossRef]
- Chao, C.Y.P.; Tu, H.; Wu, T.; Chou, K.Y.; Yeh, S.F.; Hsueh, F.L. CMOS Image Sensor Random Telegraph Noise Time Constant Extraction From Correlated To Uncorrelated Double Sampling. IEEE J. Electron Devices Soc. 2017, 5, 79–89. [Google Scholar] [CrossRef]
- Cheon, J.; Lee, D.; Choi, H. A CMOS Image Sensor with a Novel Passive Pixel Array and High Precision Current Amplifier for a Compact Digital X-ray Detector. J. Med. Imaging Health Inform. 2020, 10, 2745–2753. [Google Scholar] [CrossRef]
- Han, S.; Yoon, E. Area-efficient correlated double sampling scheme with single sampling capacitor for CMOS image sensors. Electron. Lett. 2006, 42, 335–337. [Google Scholar] [CrossRef]
- Cho, K.; Lee, D.; Lee, J.; Han, G. Sub-1-V CMOS Image Sensor Using Time-Based Readout Circuit. IEEE Trans. Electron Devices 2010, 57, 222–227. [Google Scholar] [CrossRef]
- Synopsys TCAD. Available online: https://www.synopsys.com/silicon/tcad.html (accessed on 8 November 2024).
- Ashikhmina, M.A.; Kamaev, G.N.; Cherkaev, A.S. Simulation of Electrical Conductivity in poly-Si Films under Joule Heating Using TCAD Sentaurus. In Proceedings of the 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM), Altai, Russia, 30 June–4 July 2022; pp. 33–36. [Google Scholar]
- Li, Y.; Guo, Y.; Liao, W.; Liu, J.; Peng, Z.; He, C.H.; Li, Y.; Li, P. Simulation of transient dose rate effect on analog phase locked loop. Microelectron. Reliab. 2022, 132, 114531. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Y.; He, C.; Liu, J.; Li, Y.; Li, P. Simulation studies on the transient dose rate effect of analog delay locked loops. Microelectron. Reliab. 2021, 121, 114149. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, Z.; Li, Y.; Liu, J.; Li, N.; Li, P.; Li, Y.; He, C. Analysis of the transient dose rate effect on clock resources of JXCV5SX95T FPGA. Microelectron. Reliab. 2023, 151, 115281. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Xue, Y.-Y.; Tang, N.; Huang, G.; Nie, X.; Lai, S.-K.; He, B.-P.; Ma, W.-Y.; Sheng, J.-K.; Gou, S.-L. Synergistic Radiation Effects in PPD CMOS Image Sensors Induced by Neutron Displacement Damage and Gamma Ionization Damage. Sensors 2024, 24, 1441. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, Y.; Liu, M.; Xu, R.; Ning, H.; Gao, W.; Yao, Z.; He, B.; Jin, J.; Ma, W.; et al. Transient Response in PPD CMOS Image Sensors Irradiated by Gamma Rays: Variation of Dose Rates and Integration Times. IEEE Trans. Nucl. Sci. 2019, 66, 880–885. [Google Scholar] [CrossRef]
Dose Rate (rad(Si)/s) | Ipeak (A) | τ1 (ns) | τ2 (ns) | td1 (ns) | td2 (ns) |
---|---|---|---|---|---|
1.0 × 10 6 | 3.5 × 10−12 | 1 | 10 | 8 | 60 |
1.0 × 10 7 | 9.9 × 10−12 | 1 | 10 | 8 | 60 |
1.0 × 10 8 | 7.7 × 10−11 | 1 | 10 | 8 | 60 |
1.0 × 10 9 | 7.2 × 10−10 | 1 | 10 | 8 | 60 |
1.0 × 10 10 | 7.7 × 10−9 | 1 | 10 | 8 | 60 |
1.0 × 10 11 | 7.6 × 10−8 | 1 | 10 | 8 | 60 |
Dose Rate (rad(Si)/s) | NMOS/PMOS | Ipeak_s (A) | Ipeak_l (A) | τ1_s (ns) | τ2_s (ns) | τ1_l (ns) | τ2_l (ns) | |
---|---|---|---|---|---|---|---|---|
1.0 × 106 | NMOS | Drain | 1.5 × 10−11 | 7.7 × 10−12 | 60 | 90 | 120 | 2500 |
PMOS | N-well | 2.1 × 10−9 | 1.1 × 10−9 | 50 | 80 | 120 | 270 | |
1.0 × 107 | NMOS | Drain | 1.5 × 10−10 | 7.6 × 10−11 | 60 | 90 | 61 | 2500 |
PMOS | N-well | 2.1 × 10−8 | 1.05 × 10−8 | 50 | 80 | 120 | 270 | |
1.0 × 108 | NMOS | Drain | 2.3 × 10−9 | 7.5 × 10−10 | 60 | 60 | 61 | 2400 |
PMOS | N-well | 2.1 × 10−7 | 1.1 × 10−7 | 50 | 80 | 120 | 265 | |
1.0 × 109 | NMOS | Drain | 2.0 × 10−8 | 9.5 × 10−9 | 70 | 60 | 57 | 2100 |
PMOS | N-well | 2.4 × 10−6 | 1.1 × 10−6 | 50 | 70 | 100 | 255 | |
1.0 × 1010 | NMOS | Drain | 5.0 × 10−7 | 2.0 × 10−7 | 70 | 90 | 95 | 1500 |
PMOS | N-well | 3.9 × 10−5 | 6.0 × 10−6 | 50 | 70 | 120 | 260 | |
1.0 × 1011 | NMOS | Drain | 1.9 × 10−5 | 3.0 × 10−6 | 70 | 150 | 100 | 1400 |
PMOS | N-well | 6.7 × 10−4 | 2.0 × 10−5 | 50 | 50 | 120 | 245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Peng, Z.; Dong, Z.; Li, P.; Wei, Y.; Zhang, D.; Zuo, Y.; Zhu, J.; Niu, S. A Study on the Timing Sensitivity of the Transient Dose Rate Effect on Complementary Metal-Oxide-Semiconductor Image Sensor Readout Circuits. Sensors 2024, 24, 7659. https://doi.org/10.3390/s24237659
Fu Y, Peng Z, Dong Z, Li P, Wei Y, Zhang D, Zuo Y, Zhu J, Niu S. A Study on the Timing Sensitivity of the Transient Dose Rate Effect on Complementary Metal-Oxide-Semiconductor Image Sensor Readout Circuits. Sensors. 2024; 24(23):7659. https://doi.org/10.3390/s24237659
Chicago/Turabian StyleFu, Yanjun, Zhigang Peng, Zhiyong Dong, Pei Li, Yuan Wei, Dongya Zhang, Yinghong Zuo, Jinhui Zhu, and Shengli Niu. 2024. "A Study on the Timing Sensitivity of the Transient Dose Rate Effect on Complementary Metal-Oxide-Semiconductor Image Sensor Readout Circuits" Sensors 24, no. 23: 7659. https://doi.org/10.3390/s24237659
APA StyleFu, Y., Peng, Z., Dong, Z., Li, P., Wei, Y., Zhang, D., Zuo, Y., Zhu, J., & Niu, S. (2024). A Study on the Timing Sensitivity of the Transient Dose Rate Effect on Complementary Metal-Oxide-Semiconductor Image Sensor Readout Circuits. Sensors, 24(23), 7659. https://doi.org/10.3390/s24237659