Rapid and On-Scene Chemical Identification of Intact Explosives with Portable Near-Infrared Spectroscopy and Multivariate Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Standards
2.2. Test Samples
2.3. Negative Samples
2.4. NIR Measurements
2.5. Data Pre-Processing and (Multivariate) Analysis
3. Results
3.1. Data Preprocessing of NIR Spectra of Energetic Materials
3.2. NIR Analysis of Organic Explosives
3.3. NIR Characterization of Mixtures of Organic Explosives
3.4. NIR Analysis of Inorganic Oxidizers and Pyrotechnic Mixtures
3.5. NIR-Based Identification of Energetic Materials in Forensic Casework
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almog, J.; Zitrin, S. Colorimetric Detection of Explosives. In Aspects of Explosives Detection, 1st ed.; Marshall, M., Oxley, J., Eds.; Elsevier: Oxford, UK, 2009; pp. 41–58. ISBN 978-0-12-374533-0. [Google Scholar]
- Pesenti, A.; Taudte, R.V.; McCord, B.; Doble, P.; Roux, C.; Blanes, L. Coupling Paper-Based Microfluidics and Lab on a Chip Technologies for Confirmatory Analysis of Trinitro Aromatic Explosives. Anal. Chem. 2014, 86, 4707–4714. [Google Scholar] [CrossRef] [PubMed]
- Peters, K.L.; Corbin, I.; Kaufman, L.M.; Zreibe, K.; Blanes, L.; McCord, B.R. Simultaneous colorimetric detection of improvised explosive compounds using microfluidic paper-based analytical devices (μPADs). Anal. Methods 2015, 7, 63–67. [Google Scholar] [CrossRef]
- Ewing, R.G.; Atkinson, D.A.; Eiceman, G.A.; Ewing, G.J. A critical review of Ion Mobility Spectrometry for the detection of explosives and explosive related compounds. Talanta 2001, 54, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Madhusudhan, P.; Latha, M.M. Ion Mobility Spectrometry for the detection of explosives. Int. J. Eng. Res. Technol. 2013, 2, 1369–1372. [Google Scholar] [CrossRef]
- Burns, D.; Mathias, S.; McCullough, B.J.; Hopley, C.J.; Douce, D.; Lumley, N.; Bajic, S.; Sears, P. Ambient Ionisation Mass spectrometry for the trace detection of explosives using a Portable Mass Spectrometer. Int. J. Mass Spectrom. 2022, 471, 116735–116742. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef] [PubMed]
- Bolse, N.; Eckstein, R.; Habermehl, A.; Hernandez-Sosa, G.; Eschenbaum, C.; Lemmer, U. Reliability of Aerosol Jet Printed Fluorescence Quenching Sensor Arrays for the Identification and Quantification of Explosive Vapors. ACS Omega 2017, 2, 6500–6505. [Google Scholar] [CrossRef]
- Chuvashov, R.D.; Verbitskiy, E.V.; Baranova, A.A.; Khoklov, K.O.; Shulgin, B.V. Investigation of Novel Substrates for Fluorescent Sensors to Identification of Nitroaromatic Compounds. AIP Conf. Proc. 2019, 2174, 020094. [Google Scholar] [CrossRef]
- Woodka, M.D.; Schnee, V.P. Flurorescent Polymer Sensor Array for Detection and Discrimination of Explosives in Water. Anal. Chem. 2010, 82, 9917–9924. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, Q.; Liu, T.; Wang, L.; Li, J.; Fang, Y. A portable and autonomous multichannel fluorescence detector for on-line and in situ explosive detection in aquous phase. Lab Chip 2012, 12, 4821–4828. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Lei, Y. Fluorescence based Explosives Detection: From Mechanisms to Sensory Materials. Chem. Soc. Rev. 2015, 46, 8019–8061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peveler, W.J.; Roldan, A.; Hollingsworth, N.; Porter, M.J.; Parkin, I.P. Multichannel Detection and Differentiation of Explosives with a Quantum Dot Array. ACS Nano 2016, 10, 1139–1146. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Gadea, E.; Rodrguez-Canto, P.J.; Sánchez, S.A.; Martínez-Pastor, J.P.; Abargues, R. Luminescent CdSe Quantum Dot Arrays for Rapid Sensing of Explosive Taggants. ACS App. Nano Mater. 2022, 5, 6717–6725. [Google Scholar] [CrossRef]
- Yu, H.A.; DeTata, D.A.; Lewis, S.W.; Silvester, D.S. Recent developments in the electrochemical detection of explosives: Towards field-deployable devices for forensic science. TrAC 2017, 97, 374–384. [Google Scholar] [CrossRef]
- Hay, C.E.; Lee, J.; Silvester, D.B. A methodology to detect explosive residues using a gelled ionic liquid-based field-deployable electrochemical device. J. Electroanal. Chem. 2020, 872, 114046–114054. [Google Scholar] [CrossRef]
- Arman, A.; Sağlam, Ş.; Üzer, A.; Apak, R. Electrochemical determination of nitroaromatic explosives using glassy carbon/multi-walled carbon nanotube/polyethyleneimine electrode coated with nanoparticles. Talanta 2022, 238, 122990–122999. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Üzer, A.; Sağlam, Ş.; Arman, A. Selective electrochemical detection of explosives with nanomaterial-based electrodes. Electroanalysis 2022, 35, 2200175–2200187. [Google Scholar] [CrossRef]
- Benson, S.; Speers, N.; Otieno-Alego, V. Portable explosive detection instruments. In Forensic Investigation of Explosions, 2nd ed.; Beveridge, A., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 691–724. ISBN 978-0-367-77820-0. [Google Scholar]
- Harvey, S.; Peters, T.J.; Wright, B.W. Safety considerations for sample analysis using a Near-Infrared (785 nm) Raman laser source. Appl. Spectrosc. 2003, 57, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, R.F.; Verduin, J.; Weesepoel, Y.; Alewijn, M.; Heerschop, M.; Koomen, G.; Keizers, P.; Bakker, F.; Wallace, F.; van Esch, A.; et al. Rapid and robust on-scene detection of cocaine in street samples using a handheld Near-Infrared spectrometer and machine learning algorithms. Drug Test Anal. 2020, 12, 1404–1418. [Google Scholar] [CrossRef]
- Ozaki, Y.; Morisawa, Y. Principles and Characteristics of NIR spectroscopy. In Near-Infrared Spectroscopy, 1st ed.; Ozaki, Y., Huck, C., Tsuchikawa, S., Engelsen, S.B., Eds.; Springer: Singapore, 2021; pp. 11–36. ISBN 978-981-15-8647-7. [Google Scholar]
- Small, G.W. Chemometrics and Near-Infrared Spectroscopy: Avoiding the pitfalls. TrAC 2006, 25, 1057–1066. [Google Scholar] [CrossRef]
- Canal, C.M.; Saleem, A.; Green, R.J.; Hutchins, D.A. Near-infrared spectroscopy for personal screening. Proc. SPIE 2010, 7838, 78380G. [Google Scholar] [CrossRef]
- de la Ossa, M.A.F.; Amigo, J.M.; García-Ruiz, C. Detection of residues from explosive manipulation by near-infrared hyperspectral imaging: A promising forensic tool. Forensic Sci. Int. 2014, 242, 228–235. [Google Scholar] [CrossRef] [PubMed]
- de la Ossa, M.A.F.; García-Ruiz, C.; Amigo, J.M. Near-infrared spectral imaging for the analysis of dynamite residues on human handprints. Talanta 2014, 130, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, A.; Li, Y.; Cui, F.; Wu, J.; Cao, J.; Cao, Z.; Wang, Y.; Qiao, Y. Application of NIR spectroscopy in explosive powder surface contamination remote detection. Spectrosc. Spect. Anal. 2021, 41, 441–447. [Google Scholar] [CrossRef]
- Mattos, E.C.; Moreira, E.D. Determination of the HMX and RDX content in synthesized energetic material by HPLC, FT-MIR, and FT-NIR spectroscopies. Quim. Nova 2004, 4, 540–544. [Google Scholar] [CrossRef]
- Zou, Q.; Deng, G.; Guo, X.; Jiang, W.; Li, F. A green analytical tool for in-process determination of RDX content of propellant using the NIR system. ACS Sustain. Chem. Eng. 2013, 1, 1506–1510. [Google Scholar] [CrossRef]
- Su, P.; Liang, W.; Zhang, G.; Wen, X.; Chang, H.; Meng, Z.; Xue, M.; Qiu, L. Quantitative detection of components in polymer-bonded explosives through near-infrared spectroscopy with partial least square regression. ACS Omega 2021, 6, 23163–23169. [Google Scholar] [CrossRef]
- Itozaki, H. Near-infrared inspection technology of bottled explosive liquid in airports. NIR News 2020, 31, 9–15. [Google Scholar] [CrossRef]
- Risoluti, R.; Gregori, A.; Schiavone, S.; Materazzi, S. “Click and screen” technology for the detection of explosives on human hands by a portable microNIR-chemometrics platform. Anal. Chem. 2018, 90, 4288–4292. [Google Scholar] [CrossRef]
- Grammatikaki, A.M.; Raptakis, A.; Gounaridis, L.; Athanasopoulos, A.; Gounaridis, D.; Groumas, P.; Dadoukis, A.; Maltezos, E.; Karagiannidis, L.; Ouzounoglou, E.; et al. Portable FT-NIR spectroscopic sensor for detection of chemical precursors of explosives using advanced prediction algorithms. Proc. SPIE 2022, 12139, 315–325. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Siesler, H.W.; Huck, C.W. Handheld near-infrared spectrometers: Where are we heading? NIR News 2020, 31, 3–44. [Google Scholar] [CrossRef] [Green Version]
- Beć, K.B.; Grabska, J.; Huck, C.W. Principles and applications of miniaturized near-infrared (NIR) spectrometers. Chem. Eur. J 2021, 27, 1478–1859. [Google Scholar] [CrossRef]
- Kranenburg, R.F.; Ramaker, H.J.; Sap, S.; van Asten, A.C. A Calibration Friendly Approach to Identify Drugs of Abuse Mixtures with a Portable Near-Infrared Analyzer. Drug Test Anal. 2022, 14, 1089–1101. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, R.F.; Weesepoel, Y.; Alewijn, M.; Sap, S.; Arisz, P.W.F.; van Esch, A.; Keizers, P.H.J.; van Asten, A.C. The importance of wavelength selection in on-scene identification of drugs of abuse with portable near-infrared spectroscopy. Forensic Chem. 2022, 30, 100437–100446. [Google Scholar] [CrossRef]
- Kranenburg, R.F.; Ramaker, H.-J.; van Asten, A.C. On-site forensic analysis of colored seized materials: Detection of brown heroin and MDMA-tablets by a portable NIR spectrometer. Drug Test. Anal. 2022, 14, 1762–1772. [Google Scholar] [CrossRef]
- Kranenburg, R.F.; Ramaker, H.-J.; van Asten, A.C. Portable near-infrared spectroscopy for the isomeric differentiation of new psychoactive substances. Forensic Sci. Int. 2022, 341, 111467–111476. [Google Scholar] [CrossRef] [PubMed]
- Kranenburg, R.F.; Ramaker, H.-J.; Weesepoel, Y.; Arisz, P.W.F.; Keizers, P.H.J.; van Esch, A.; Zieltjens-van Uzem, C.; van den Berg, J.D.J.; Hulshof, J.W.; Bakels, S.; et al. The influence of water of crystallization in NIR-based MDMA·HCl detection. Forensic Chem. 2023, 32, 100464–100474. [Google Scholar] [CrossRef]
- Coppey, F.; Bécue, A.; Sacré, P.-Y.; Ziemons, E.M.; Hubert, P.; Esseiva, P. Providing illicit drugs results in five seconds using ultra-portable NIR technology: An opportunity for forensic laboratories to cope with the trend toward the decentralization of forensic capabilities. Forensic Sci. Int. 2020, 317, 110498. [Google Scholar] [CrossRef]
- NIRLAB Homepage. Available online: https://nirlab.com/ (accessed on 3 March 2023).
Confusion Matrix | Powder Puck NIR Result | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ETN | TATP | HMTD | PETN | RDX | TNT | Tetryl | AN | NC | Neg | ||
Sample Identity | ETN | 2/2 | |||||||||
TATP | 1/3 | 2/3 | |||||||||
HMTD | 9/9 | ||||||||||
PETN | 8/8 | ||||||||||
RDX | 3/4 | 1/4 | |||||||||
TNT | 5/5 | ||||||||||
Tetryl | 10/10 | ||||||||||
AN | 7/13 | 6/13 | |||||||||
NC | 2/4 | 2/4 | |||||||||
Neg | 60/60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Damme, I.M.; Mestres-Fitó, P.; Ramaker, H.-J.; Hulsbergen, A.W.C.; van der Heijden, A.E.D.M.; Kranenburg, R.F.; van Asten, A.C. Rapid and On-Scene Chemical Identification of Intact Explosives with Portable Near-Infrared Spectroscopy and Multivariate Data Analysis. Sensors 2023, 23, 3804. https://doi.org/10.3390/s23083804
van Damme IM, Mestres-Fitó P, Ramaker H-J, Hulsbergen AWC, van der Heijden AEDM, Kranenburg RF, van Asten AC. Rapid and On-Scene Chemical Identification of Intact Explosives with Portable Near-Infrared Spectroscopy and Multivariate Data Analysis. Sensors. 2023; 23(8):3804. https://doi.org/10.3390/s23083804
Chicago/Turabian Stylevan Damme, Irene M., Pol Mestres-Fitó, Henk-Jan Ramaker, Annemieke W. C. Hulsbergen, Antoine E. D. M. van der Heijden, Ruben F. Kranenburg, and Arian C. van Asten. 2023. "Rapid and On-Scene Chemical Identification of Intact Explosives with Portable Near-Infrared Spectroscopy and Multivariate Data Analysis" Sensors 23, no. 8: 3804. https://doi.org/10.3390/s23083804
APA Stylevan Damme, I. M., Mestres-Fitó, P., Ramaker, H.-J., Hulsbergen, A. W. C., van der Heijden, A. E. D. M., Kranenburg, R. F., & van Asten, A. C. (2023). Rapid and On-Scene Chemical Identification of Intact Explosives with Portable Near-Infrared Spectroscopy and Multivariate Data Analysis. Sensors, 23(8), 3804. https://doi.org/10.3390/s23083804