Implications of the Onset of Sweating on the Sweat Lactate Threshold
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures and Protocols
2.3. Measurements during the Exercise Test
2.4. Statistical Analysis
3. Results
3.1. Participants Characteristics and Physiological Results
3.2. Relationship between OS and sLT
3.3. Relationship between OS and Blood LT
3.4. Effect of Early OS on the Blood–Sweat Lactate Threshold Approximation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poole, D.C.; Rossiter, H.B.; Brooks, G.A.; Gladden, L.B. The anaerobic threshold: 50+ years of controversy. J. Physiol. 2021, 599, 737–767. [Google Scholar] [CrossRef]
- Svedahl, K.; MacIntosh, B.R. Anaerobic threshold: The concept and methods of measurement. Can. J. Appl. Physiol. 2003, 28, 299–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faude, O.; Kindermann, W.; Meyer, T. Lactate threshold concepts: How valid are they? Sports Med. 2009, 39, 469–490. [Google Scholar] [CrossRef] [PubMed]
- Beneke, R.; Leithäuser, R.M.; Ochentel, O. Blood lactate diagnostics in exercise testing and training. Int. J. Sports Physiol. Perform. 2011, 6, 8–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kindermann, W.; Simon, G.; Keul, J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Hollmann, W. 42 years ago—Development of the concepts of ventilatory and lactate threshold. Sports Med. 2001, 31, 315–320. [Google Scholar] [CrossRef]
- Seki, Y.; Nakashima, D.; Shiraishi, Y.; Ryuzaki, T.; Ikura, H.; Miura, K.; Suzuki, M.; Watanabe, T.; Nagura, T.; Matsumato, M.; et al. A novel device for detecting anaerobic threshold using sweat lactate during exercise. Sci. Rep. 2021, 11, 4929. [Google Scholar] [CrossRef]
- Okawara, H.; Sawada, T.; Nakashima, D.; Maeda, Y.; Minoji, S.; Morisue, T.; Katsumata, Y.; Matsumoto, M.; Nakamura, M.; Nagura, T. Kinetic changes in sweat lactate following fatigue during constant workload exercise. Physiol. Rep. 2022, 10, e15169. [Google Scholar] [CrossRef]
- Gisolfi, C.V.; Wenger, C.B. Temperature regulation during exercise: Old concepts, new ideas. Exerc. Sport Sci. Rev. 1984, 12, 339–372. [Google Scholar] [CrossRef]
- Araki, T.; Inoue, M.; Fujiwara, H. Experiment studies on sweating for exercise prescription: Total body sweat rate in relation to work load in physically trained adult males. J. Hum. Ergol. 1979, 8, 91–99. [Google Scholar]
- Kondo, N.; Takano, S.; Aoki, K.; Shibasaki, M.; Tominaga, H.; Inoue, Y. Regional differences in the effect of exercise intensity on thermoregulatory sweating and cutaneous vasodilation. Acta Physiol. Scand. 1998, 164, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Buono, M.J.; Lee, N.V.; Miller, P.W. The relationship between exercise intensity and the sweat lactate excretion rate. J. Physiol. Sci. 2010, 60, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Green, J.M.; Bishop, P.A.; Muir, I.H.; Lomax, R.G. Gender differences in sweat lactate. Eur. J. Appl. Physiol. 2000, 82, 230–235. [Google Scholar] [CrossRef]
- Green, J.M.; Bishop, P.A.; Muir, I.H.; Lomax, R.G. Lactate-sweat relationships in younger and middle-aged men. J. Aging Phys. Act. 2001, 9, 67–77. [Google Scholar] [CrossRef]
- Du Bois, D. Clinical calorimetry: Tenth paper a formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 1916, 17, 863–871. [Google Scholar] [CrossRef] [Green Version]
- Wiles, J.D.; Bird, S.R.; Hopkins, J.; Riley, M. Effect of caffeinated coffee on running speed, respiratory factors, blood lactate and perceived exertion during 1500-m treadmill running. Br. J. Sports Med. 1992, 26, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Okawara, H.; Sawada, T.; Nakashima, D.; Maeda, Y.; Minoji, S.; Morisue, T.; Katsumata, Y.; Matsumoto, M.; Nakamura, M.; Nagura, T. Realtime monitoring of local sweat rate kinetics during constant-load exercise using perspiration-meter with airflow compensation system. Sensors 2022, 22, 5473. [Google Scholar] [CrossRef]
- Sawada, T.; Okawara, H.; Nakashima, D.; Ikeda, K.; Nagahara, J.; Fujitsuka, H.; Hoshino, S.; Maeda, Y.; Katsumata, Y.; Nakamura, M.; et al. Constant load pedaling exercise combined with electrical muscle stimulation leads to an early increase in sweat lactate levels. Sensors 2022, 22, 9585. [Google Scholar] [CrossRef]
- Katsumata, Y.; Sano, M.; Okawara, H.; Sawada, T.; Nakashima, D.; Ichihara, G.; Fukuda, K.; Sato, K.; Kobayashi, E. Laminar flow ventilation system to prevent airborne infection during exercise in the COVID-19 crisis: A single-center observational study. PLoS ONE 2021, 16, e0257549. [Google Scholar] [CrossRef]
- Baker, L.B.; Wolfe, A.S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 2020, 120, 719–752. [Google Scholar] [CrossRef] [Green Version]
- Benzinger, T.H. On Physical Heat Regulation and the Sense of Temperature in Man. Proc. Natl. Acad. Sci. USA 1959, 45, 645–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, N.; Shibasaki, M.; Aoki, K.; Koga, S.; Inoue, Y.; Crandall, C.G. Function of human eccrine sweat glands during dynamic exercise and passive heat stress. J. Appl. Physiol. 2001, 90, 1877–1881. [Google Scholar] [CrossRef] [PubMed]
- Nadel, E.R.; Bullard, R.W.; Stolwijk, J.A. Importance of skin temperature in the regulation of sweating. J. Appl. Physiol. 1971, 31, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Chappuis, P.; Pittet, P.; Jequier, E. Heat storage regulation in exercise during thermal transients. J. Appl. Physiol. 1976, 40, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Montain, S.J.; Latzka, W.A.; Sawka, M.N. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J. Appl. Physiol. 1995, 79, 1434–1439. [Google Scholar] [CrossRef]
- Saltin, B.; Gagge, A.P. Sweating and body temperatures during exercise. Int. J. Biometeorol. 1971, 15, 189–194. [Google Scholar] [CrossRef]
- Taylor, W.F.; Johnson, J.M.; Kosiba, W.A.; Kwan, C.M. Graded cutaneous vascular responses to dynamic leg exercise. J. Appl. Physiol. 1988, 64, 1803–1809. [Google Scholar] [CrossRef]
- Weiner, J.S.; Van Heyningen, R.E. Observations on lactate content of sweat. J. Appl. Physiol. 1952, 4, 734–744. [Google Scholar] [CrossRef]
- Astrand, I. Lactate Content in Sweat. Acta Physiol. Scand. 1963, 58, 359–367. [Google Scholar] [CrossRef]
- Brooks, G.A. The science and translation of lactate shuttle theory. Cell Metab. 2018, 27, 757–785. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Tanaka, Y.; Omori, K.; Kuwahara, T.; Ogura, Y.; Ueda, H. Sex- and menstrual cycle-related differences in sweating and cutaneous blood flow in response to passive heat exposure. Eur. J. Appl. Physiol. 2005, 94, 323–332. [Google Scholar] [CrossRef]
- Frye, A.J.; Kamon, E. Sweating efficiency in acclimated men and women exercising in humid and dry heat. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 54, 972–977. [Google Scholar] [CrossRef]
- Madeira, L.G.; da Fonseca, M.A.; Fonseca, I.A.; de Oliveira, K.P.; Passos, R.L.; Machado-Moreira, C.A.; Rodrigues, L.O. Sex-related differences in sweat gland cholinergic sensitivity exist irrespective of differences in aerobic capacity. Eur. J. Appl. Physiol. 2010, 109, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, T.; Slabochova, Z.; Naman, R.K.; Sargent, F., 2nd. Sex differences in physiological reactions to thermal stress. J. Appl. Physiol. 1967, 22, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Henane, R.; Flandrois, R.; Charbonnier, J.P. Increase in sweating sensitivity by endurance conditioning in man. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 43, 822–828. [Google Scholar] [CrossRef]
- Yamazaki, F.; Fujii, N.; Sone, R.; Ikegami, H. Mechanisms of potentiation in sweating induced by long-term physical training. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 228–232. [Google Scholar] [CrossRef]
- Ichinose-Kuwahara, T.; Inoue, Y.; Iseki, Y.; Hara, S.; Ogura, Y.; Kondo, N. Sex differences in the effects of physical training on sweat gland responses during a graded exercise. Exp. Physiol. 2010, 95, 1026–1032. [Google Scholar] [CrossRef] [PubMed]
- Baum, E.; Brück, K.; Schwennicke, H.P. Adaptive modifications in the thermoregulatory system of long-distance runners. J. Appl. Physiol. 1976, 40, 404–410. [Google Scholar] [CrossRef]
- Scobbie, R.B.; Sofaer, J.A. Sweat pore count, hair density and tooth size: Heritability and genetic correlation. Hum. Hered. 1987, 37, 349–353. [Google Scholar] [CrossRef]
- Saha, T.; Fang, J.; Mukherjee, S.; Knisely, C.T.; Dickey, M.D.; Velev, O.D. Osmotically Enabled Wearable Patch for Sweat Harvesting and Lactate Quantification. Micromachines 2021, 12, 1513. [Google Scholar] [CrossRef]
- Horstmann, T.; Mayer, F.; Maschmann, J.; Niess, A.; Roecker, K.; Dickhuth, H.H. Metabolic reaction after concentric and eccentric endurance-exercise of the knee and ankle. Med. Sci. Sports Exerc. 2001, 33, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Ishii, N.; Kizuka, T.; Kraemer, R.R.; Honda, Y.; Takamatsu, K. Hormonal and metabolic responses to slow movement resistance exercise with different durations of concentric and eccentric actions. Eur. J. Appl. Physiol. 2009, 106, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Cotter, J.D.; Patterson, M.J.; Taylor, N.A. The topography of eccrine sweating in humans during exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 71, 549–554. [Google Scholar] [CrossRef] [PubMed]
Total (n = 40) | Early Perspiration Group (n = 17) | Regular Perspiration Group (n = 23) | p-Value | |
---|---|---|---|---|
Age (years) | 21.8 ± 4.0 | 22.4 ± 4.6 | 21.4 ± 3.5 | 0.71 |
BMI | 22.4 ± 2.1 | 22.7 ± 1.9 | 22.2 ± 2.3 | 0.48 |
BSA (m2) | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.1 | 0.86 |
Body water (%) | 57.8 ± 5.4 | 56.8 ± 5.6 | 58.6 ± 5.3 | 0.31 |
Body fat ratio (%) | 17.1 ± 5.0 | 18.6 ± 5.4 | 16.0 ± 4.5 | 0.11 |
Muscle mass (kg) | 53.6 ± 5.8 | 53.0 ± 5.3 | 54.0 ± 6.3 | 0.61 |
RT (°C) | 24.1 ± 1.9 | 24.2 ± 1.8 | 24.0 ± 2.0 | 0.91 |
RH (%) | 42.5 ± 9.3 | 42.3 ± 8.6 | 42.6 ± 9.9 | 0.92 |
Baseline | At the Warm-Up Onset | At the Incremental Exercise Onset | At the Sweat Lactate Threshold | At the End of Incremental Exercise | |
---|---|---|---|---|---|
Load (watt) | 0.0 ± 0.0 | 20.0 ± 0.0 | 50.0 ± 0.0 | 131.7 ± 48.5 | 261.2 ± 43.6 |
Heart rate (bpm) | - | 79.3 ± 11.1 | 94.4 ± 14.0 | 137.0 ± 23.1 | 172.9 ± 13.8 |
Sweat lactate (μA) | 4.0 ± 1.1 | 3.9 ± 1.2 | 3.7 ± 1.2 | 3.9 ± 1.4 | 9.6 ± 4.6 |
Local sweat rate (mg/cm2/min) | 0.04 ± 0.11 | 0.01 ± 0.09 | 0.08 ± 0.17 | 0.18 ± 0.20 | 0.84 ± 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maeda, Y.; Okawara, H.; Sawada, T.; Nakashima, D.; Nagahara, J.; Fujitsuka, H.; Ikeda, K.; Hoshino, S.; Kobari, Y.; Katsumata, Y.; et al. Implications of the Onset of Sweating on the Sweat Lactate Threshold. Sensors 2023, 23, 3378. https://doi.org/10.3390/s23073378
Maeda Y, Okawara H, Sawada T, Nakashima D, Nagahara J, Fujitsuka H, Ikeda K, Hoshino S, Kobari Y, Katsumata Y, et al. Implications of the Onset of Sweating on the Sweat Lactate Threshold. Sensors. 2023; 23(7):3378. https://doi.org/10.3390/s23073378
Chicago/Turabian StyleMaeda, Yuta, Hiroki Okawara, Tomonori Sawada, Daisuke Nakashima, Joji Nagahara, Haruki Fujitsuka, Kaito Ikeda, Sosuke Hoshino, Yusuke Kobari, Yoshinori Katsumata, and et al. 2023. "Implications of the Onset of Sweating on the Sweat Lactate Threshold" Sensors 23, no. 7: 3378. https://doi.org/10.3390/s23073378