Whispering-Gallery Mode Micro-Ring Resonator Integrated with a Single-Core Fiber Tip for Refractive Index Sensing
Abstract
:1. Introduction
- -
- High sensitivity, which refers to achieving a significant shift in the resonance spectrum per refractive index unit (RIU).
- -
- High Q-factor—the higher it is, the sharper the dips in the resonant spectrum, enabling more precise measurements. The Q-factor can be expressed as a ratio of the resonant wavelength to the linewidth of the dip corresponding to that wavelength , as described in Equation (1).
- -
- High extinction ratio, meaning the difference in power between dips and peaks in the resonant spectrum. For this research, it should preferably be not smaller than 8 dB. Lower values of the extinction ratio may pose challenges for optical receivers in practical applications to recognize high and low signal levels [10].
- -
- Free spectral range (FSR) is another parameter of resonator sensors, representing the distance between adjacent dips in the spectrum. The FSR should not be excessively narrow because the narrower it is, the more limited the measurement range is—the starting position of the observed dip will be replaced sooner by the subsequent dip.
2. Proposed Structure and Fabrication Process
3. Experimental and Numerical Analysis
3.1. Characteristics of the Structure
3.2. Measurements with Varying Ambient Refractive Index
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WGM | Whispering gallery modes |
2PP | Two-photon polymerization |
RI | Refractive index |
RIU | Refractive Index unit |
Q-factor | Quality factor |
FDTD | Finite difference time domain |
SLD | Superluminescent diode |
References
- Jiang, X.; Qavi, A.J.; Huang, S.H.; Yang, L. Whispering-Gallery Sensors. Matter 2020, 3, 371–392. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Pan, J.; Zhao, Y.; Wang, J.; Xiao, S. Whispering Gallery Mode Optical Microresonators: Structures and Sensing Applications. Phys. Status Solidi A 2020, 217, 1900825. [Google Scholar] [CrossRef]
- Bianucci, P. Optical Microbottle Resonators for Sensing. Sensors 2016, 16, 1841. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Pan, J.; Hu, S. Overview of the coupling methods used in whispering gallery mode resonator systems for sensing. Opt. Lasers Eng. 2020, 127, 105968. [Google Scholar] [CrossRef]
- Loyez, M.; Adolphson, M.; Liao, J.; Yang, L. From Whispering Gallery Mode Resonators to Biochemical Sensors. ACS Sens. 2023, 8, 2440–2470. [Google Scholar] [CrossRef]
- Brooks, A.; Chu, X.-L.; Liu, Z.; Schott, R.; Ludwig, A.; Wieck, A.D.; Midolo, L.; Lodahl, P.; Rotenberg, N. Integrated Whispering-Gallery-Mode Resonator for Solid-State Coherent Quantum Photonics. Nano Lett. 2021, 21, 8707–8714. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yin, Y.; Ma, L.; Schmidt, O.G. Recent Progress on Optoplasmonic Whispering-Gallery-Mode Microcavities. Adv. Opt. Mater. 2021, 9, 2100143. [Google Scholar] [CrossRef]
- Li, C.; Chen, L.; McLeod, E.; Su, J. Dark mode plasmonic optical microcavity biochemical sensor. Photonics Res. 2019, 7, 939–947. [Google Scholar] [CrossRef]
- Foreman, M.R.; Swaim, J.D.; Vollmer, F. Whispering gallery mode sensors. Adv. Opt. Photonics 2015, 7, 168. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, J.; Wang, X.; Chen, J.; Zhao, Y.; Zhang, Y. Large measurement range temperature sensor based on WGM and MMI in an offset structure fiber coupler. Opt. Fiber Technol. 2023, 80, 103418. [Google Scholar] [CrossRef]
- Geints, Y.E.; Minin, O.V.; Minin, I.V. Proof-of-concept of a miniature pressure sensor based on coupled optical WGMs excited in a dielectric microsphere. Opt. Laser Technol. 2022, 151, 108015. [Google Scholar] [CrossRef]
- Reinis, P.K.; Milgrave, L.; Draguns, K.; Brice, I.; Alnis, J.; Atvars, A. High-Sensitivity Whispering Gallery Mode Humidity Sensor Based on Glycerol Microdroplet Volumetric Expansion. Sensors 2021, 21, 1746. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, F.; Arnold, S.; Keng, D. Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. USA 2008, 105, 20701–20704. [Google Scholar] [CrossRef] [PubMed]
- Frustaci, S.; Vollmer, F. Whispering-gallery mode (WGM) sensors: Review of established and WGM-based techniques to study protein conformational dynamics. Curr. Opin. Chem. Biol. 2019, 51, 66–73. [Google Scholar] [CrossRef]
- Ajad, A.K.; Islam, M.J.; Kaysir, M.R.; Atai, J. Highly sensitive bio sensor based on WGM ring resonator for hemoglobin detection in blood samples. Optik 2021, 226, 166009. [Google Scholar] [CrossRef]
- Chiang, C.-C.; Chao, J.-C. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution. J. Nanomater. 2013, 2013, e372625. [Google Scholar] [CrossRef]
- Buzzin, A.; Asquini, R.; Caputo, D.; de Cesare, G. Sensitive and Compact Evanescent-Waveguide Optical Detector for Sugar Sensing in Commercial Beverages. Sensors 2023, 23, 8184. [Google Scholar] [CrossRef] [PubMed]
- Mar-Abundis, N.; Fuentes-Rubio, Y.A.; Domínguez-Cruz, R.F.; Guzmán-Sepúlveda, J.R. Sugar Detection in Aqueous Solution Using an SMS Fiber Device. Sensors 2023, 23, 6289. [Google Scholar] [CrossRef]
- Avino, S.; Krause, A.; Zullo, R.; Giorgini, A.; Malara, P.; De Natale, P.; Loock, H.P.; Gagliardi, G. Direct Sensing in Liquids Using Whispering-Gallery-Mode Droplet Resonators. Adv. Opt. Mater. 2014, 2, 1155–1159. [Google Scholar] [CrossRef]
- Bannur Nanjunda, S.; Seshadri, V.N.; Krishnan, C.; Rath, S.; Arunagiri, S.; Bao, Q.; Helmerson, K.; Zhang, H.; Jain, R.; Sundarrajan, A.; et al. Emerging nanophotonic biosensor technologies for virus detection. Nanophotonics 2022, 11, 5041–5059. [Google Scholar] [CrossRef]
- Shangguan, Q.; Chen, Z.; Yang, H.; Cheng, S.; Yang, W.; Yi, Z.; Wu, X.; Wang, S.; Yi, Y.; Wu, P. Design of Ultra-Narrow Band Graphene Refractive Index Sensor. Sensors 2022, 22, 6483. [Google Scholar] [CrossRef]
- Yue, Y.; Ding, H.; Chen, C. Label-free optical antibody testing kit based on a self-assembled whispering-gallery-mode microsphere. J. Biophotonics 2021, 14, e202000338. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Nie, T.; Ding, M. Refractive Index Sensor Based on Gold-Coated Whispering Gallery Mode Microdisk Resonator. IEEE Sens. J. 2020, 20, 9871–9876. [Google Scholar] [CrossRef]
- Wei, H.; Krishnaswamy, S. Direct Laser Writing Polymer Micro-Resonators for Refractive Index Sensors. IEEE Photonics Technol. Lett. 2016, 28, 2819–2822. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Silica Bottle Resonator Sensor for Refractive Index and Temperature Measurements. Sensors 2016, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Guo, Z. Integrated sensor with a whispering-gallery mode and surface plasmonic resonance for the enhanced detection of viruses. JOSA B 2021, 38, 2855–2862. [Google Scholar] [CrossRef]
- Cao, S.; Shang, X.; Yu, H.; Shi, L.; Zhang, L.; Wang, N.; Qiu, M. Two-photon direct laser writing of micro Fabry-Perot cavity on single-mode fiber for refractive index sensing. Opt. Express 2022, 30, 25536. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Qin, X.; Lv, M.; Qiu, L.; Chen, Z.; Zhang, F. Design of a New Type of In-Hole Gold-Coated High-Performance Quasi-PCF Sensor Enhanced with Surface Plasmon Resonance. Coatings 2023, 13, 1261. [Google Scholar] [CrossRef]
- Gao, S.; Wei, K.; Yang, H.; Tang, Y.; Yi, Z.; Tang, C.; Tang, B.; Yi, Y.; Wu, P. Design of Surface Plasmon Resonance-Based D-Type Double Open-Loop Channels PCF for Temperature Sensing. Sensors 2023, 23, 7569. [Google Scholar] [CrossRef]
- Chunyang, H.; Hui, D.; Xianli, L.; Shaofei, D. Temperature insensitive refractive index sensor based on single-mode micro-fiber Sagnac loop interferometer. Appl. Phys. Lett. 2014, 104, 181906. [Google Scholar] [CrossRef]
- Brice, I.; Grundsteins, K.; Draguns, K.; Atvars, A.; Alnis, J. Whispering Gallery Mode Resonator Temperature Compensation and Refractive Index Sensing in Glucose Droplets. Sensors 2021, 21, 7184. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Krishnaswamy, S. Polymer micro-ring resonator integrated with a fiber ring laser for ultrasound detection. Opt. Lett. 2017, 42, 2655. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhu, T.; Huang, D.; Liu, M.; Deng, M.; Huang, W. In-fiber whispering-gallery-mode resonator fabricated by femtosecond laser micromachining. Opt. Lett. 2015, 40, 3770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-N.; Zhu, N.; Zhou, T.; Zheng, Y.; Ping Shum, P. Research on Fabrication and Sensing Properties of Fiber-Coupled Whispering Gallery Mode Microsphere Resonator. IEEE Sens. J. 2020, 20, 833–841. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, S.; Feng, S.; Xiao, Y.; Cui, W.; Wang, X.; Sun, W.; Ye, J.; Han, P.; Zhang, X.; et al. High- Q Polymer Microcavities Integrated on a Multicore Fiber Facet for Vapor Sensing. Adv. Opt. Mater. 2019, 7, 1900602. [Google Scholar] [CrossRef]
- Otuka, A.J.G.; Tomazio, N.B.; Paula, K.T.; Mendonça, C.R. Two-Photon Polymerization: Functionalized Microstructures, Micro-Resonators, and Bio-Scaffolds. Polymers 2021, 13, 1994. [Google Scholar] [CrossRef]
- Kotz, F.; Quick, A.S.; Risch, P.; Martin, T.; Hoose, T.; Thiel, M.; Helmer, D.; Rapp, B.E. Two-Photon Polymerization of Nanocomposites for the Fabrication of Transparent Fused Silica Glass Microstructures. Adv. Mater. 2021, 33, 2006341. [Google Scholar] [CrossRef]
- O’Halloran, S.; Pandit, A.; Heise, A.; Kellett, A. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. Adv. Sci. 2023, 10, 2204072. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Sun, J.; Yu, M.; Zhang, Z.; Ge, Y. Whispering gallery mode splitting on filling-based microresonators for refractive index sensing. Opt. Commun. 2021, 497, 127193. [Google Scholar] [CrossRef]
- Lu, C.; Nikbakht, H.; Karabiyik, M.; Alaydrus, M.; Akca, B.I. A compound optical microresonator design for self-referencing and multiplexed refractive index sensing. Opt. Express 2021, 29, 42215. [Google Scholar] [CrossRef]
Ring ϕ 1 [μm] | Ring OL 2 [μm] | Loop OL [μm] | λm+1 and λm [nm] | Measured FSR [nm] | Calculated Ring FSR [nm] | Calculated Loop FSR [nm] |
---|---|---|---|---|---|---|
40.00 | 192.20 | 229.80 | 1550.40 | 6.40 | 11.78 | 7.00 |
1556.80 | ||||||
34.00 | 163.30 | 212.80 | 1551.40 | 7.80 | 13.61 | 7.58 |
1559.20 | ||||||
28.00 | 134.50 | 195.90 | 1548.80 | 8.00 | 16.19 | 8.21 |
1556.80 |
Ring ϕ [μm] | Ring OL [μm] | Loop OL [μm] | λm+1 and λm [nm] | Measured FSR [nm] | Calculated Ring FSR [nm] | Calculated Loop FSR [nm] |
---|---|---|---|---|---|---|
16.00 | 76.90 | 172.20 | 1276.12 | 20.74 | 21.53 | 6.40 |
1296.86 | ||||||
1296.86 | 19.24 | 22.20 | 6.60 | |||
1316.10 | ||||||
1316.10 | 23.80 | 22.94 | 6.82 | |||
1339.90 | ||||||
1339.90 | 21.02 | 23.72 | 7.05 | |||
1360.92 |
Ring ϕ [μm] | Ring OL [μm] | Loop OL [μm] | λm+1 and λm [nm] | Measured FSR [nm] | Calculated Ring FSR [nm] |
---|---|---|---|---|---|
16.00 | 76.90 | 172.50 | 1312.70 | 20.92 | 22.77 |
1333.62 | |||||
1333.62 | 21.12 | 23.50 | |||
1354.74 | |||||
1354.74 | 21.76 | 24.26 | |||
1376.50 | |||||
1479.58 | 25.44 | 28.97 | |||
1505.02 | |||||
1505.02 | 26.02 | 29.98 | |||
1531.04 | |||||
1531.04 | 27.56 | 31.04 | |||
1558.60 |
Ring ϕ [μm] | Ring OL [μm] | Loop OL [μm] | λm+1 and λm [nm] | Measured FSR [nm] | Calculated Loop FSR [nm] |
---|---|---|---|---|---|
16.00 | 76.90 | 172.50 | 1364.36 | 6.1 | 7.22 |
1370.46 | |||||
1514.70 | 8.16 | 8.91 | |||
1522.86 | |||||
1540.80 | 9.20 | 9.23 | |||
1550.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halendy, M.; Ertman, S. Whispering-Gallery Mode Micro-Ring Resonator Integrated with a Single-Core Fiber Tip for Refractive Index Sensing. Sensors 2023, 23, 9424. https://doi.org/10.3390/s23239424
Halendy M, Ertman S. Whispering-Gallery Mode Micro-Ring Resonator Integrated with a Single-Core Fiber Tip for Refractive Index Sensing. Sensors. 2023; 23(23):9424. https://doi.org/10.3390/s23239424
Chicago/Turabian StyleHalendy, Monika, and Sławomir Ertman. 2023. "Whispering-Gallery Mode Micro-Ring Resonator Integrated with a Single-Core Fiber Tip for Refractive Index Sensing" Sensors 23, no. 23: 9424. https://doi.org/10.3390/s23239424
APA StyleHalendy, M., & Ertman, S. (2023). Whispering-Gallery Mode Micro-Ring Resonator Integrated with a Single-Core Fiber Tip for Refractive Index Sensing. Sensors, 23(23), 9424. https://doi.org/10.3390/s23239424