Biodegradable Carrageenan-Based Force Sensor: An Experimental Approach
Abstract
:1. Introduction
2. State-of-the-Art: Natural-Materials-Based Force Sensors
2.1. Biodegradability of Biosensor Materials
2.2. Application of Seaweed-Derived Carrageenan in the Development of Biodegradable Force Sensors and Combination with Metal Salts and Metal Oxides
2.3. The Role of Iron (III) Oxide in the Force Sensor Structure
3. Materials and Methods
3.1. Materials and Devices
3.2. Sample Preparation
3.3. Experimental Section
4. Results
5. Discussion
6. Conclusions
- The iron (III) oxide powder added into the carrageenan ensures the electric conductivity of the solution. However, it affects the cross-linking of biopolymer molecules and causes corresponding changes in its structure. The most promising results are provided by a composition containing 1.8% Fe2O3.
- The pure composition of carrageenan and Fe2O3 powder demonstrates the piezoresistive properties, but the material characteristics are extremely sensitive to the humidity level of the material and the environmental impact.
- Glycerol is a suitable material to stabilize the characteristics of carrageenan and Fe2O3 compositions. However, the glycerol concentration in the solution significantly impacts material electric conductivity elasticity and hysteresis. The most promising is a combination containing 18% glycerol.
- The material composition containing 1.8% Fe2O3 and 18% glycerol is suitable for producing tactile force or pressure sensors, ensuring a sensitivity of 0.355 kΩ/N in the load range from 0 N to 500 N.
- Varying the concentration of Fe2O3 and glycerol in the carrageenan makes it possible to optimize sensor characteristics regarding its specific use case while maintaining relatively low manufacturing costs and exploiting its environmentally friendly features.
- The results of the performed research prove the suitability of the tested materials for implementation in sensing applications; however, the main direction for the future is more detailed research on long-term characteristics under various loads and the implementation of data processing algorithms capable of compensating for characteristic drift in a short period.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Takei, K. History of Flexible and Stretchable Devices. In Flexible and Stretchable Medical Devices; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018. [Google Scholar]
- Carvalho, H.; Yao, Y.; Gonçalves, L.M. Flexible force sensors for e-textiles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 072007. [Google Scholar] [CrossRef]
- Chen, Y.W.; Pancham, P.P.; Mukherjee, A.; Martincic, E.; Lo, C.Y. Recent advances in flexible force sensors and their applications: A review. Flex. Print. Electron. 2022, 7, 033002. [Google Scholar] [CrossRef]
- Chen, W.; Yan, X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. J. Mater. Sci. Technol. 2020, 43, 175–188. [Google Scholar] [CrossRef]
- Wang, C.; Liu, C.; Shang, F.; Niu, S.; Ke, L.; Zhang, N.; Ma, B.; Li, R.; Sun, X.; Zhang, S. Tactile sensing technology in bionic skin: A review. Biosens. Bioelectron. 2023, 220, 114882. [Google Scholar] [CrossRef]
- Du, J.; Ma, Q.; Wang, B.; Sun, L.; Liu, L. Hydrogel fibers for wearable sensors and soft actuators. iScience 2023, 26, 106796. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, F.; Magagnin, L.; Rossi, F. Progress in hydrogels for sensing applications: A review. Mater. Today Chem. 2020, 17, 100317. [Google Scholar] [CrossRef]
- Sadun, A.S.; Jalani, J.; Sukor, J.A. Force Sensing Resistor (FSR): A brief overview and the low-cost sensor for active compliance control. SPIE 2016, 10011, 222–226. [Google Scholar] [CrossRef]
- Liu, E.; Cai, Z.; Ye, Y.; Zhou, M.; Liao, H.; Yi, Y. An Overview of Flexible Sensors: Development, Application, and Challenges. Sensors 2023, 23, 817. [Google Scholar] [CrossRef]
- Hoffmann, K. Applying the Wheatstone Bridge Circuit; HBM: Darmstadt, Germany, 1974. [Google Scholar]
- Liu, X.Y.; O’Brien, M.; Mwangi, M.; Li, X.J.; Whitesides, G.M. Paper-based piezoresistive MEMS force sensors. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011; pp. 133–136. [Google Scholar] [CrossRef]
- Ali, G.A.M.; Thalji, M.R.; Salam, A.; Makhlouf, H. Biodegradable Materials: Fundamentals, Importance, and Impacts. In Handbook of Biodegradable Materials; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Ma, X.; Hu, Q.; Dai, Y.; He, P.; Zhang, X. Disposable sensors based on biodegradable polylactic acid piezoelectret films and their application in wearable electronics. Sens. Actuators A Phys. 2022, 346, 113834. [Google Scholar] [CrossRef]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and Enzymatic Degradation of Synthetic Plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef]
- Roohi; Bano, K.; Kuddus, M.; Zaheer, M.R.; Zia, Q.; Khan, M.F.; Ashraf, G.M.; Gupta, A.; Aliev, G. Microbial Enzymatic Degradation of Biodegradable Plastics. Curr. Pharm. Biotechnol. 2017, 18, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Kalita, N.K.; Sarmah, A.; Bhasney, S.M.; Kalamdhad, A.; Katiyar, V. Demonstrating an ideal compostable plastic using biodegradability kinetics of poly(lactic acid) (PLA) based green biocomposite films under aerobic composting conditions. Environ. Chall. 2021, 3, 100030. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, K.-K. Soft Polymer-Based Technique for Cellular Force Sensing. Polymers 2021, 13, 2672. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Xie, F.; Wei, L.; Zheng, C.; Liu, X.; Wang, L.; Liu, P. All-Starch-Based Hydrogel for Flexible Electronics: Strain-Sensitive Batteries and Self-Powered Sensors. ACS Sustain. Chem. Eng. 2022, 10, 6724–6735. [Google Scholar] [CrossRef]
- Su, T.; Liu, N.; Gao, Y.; Lei, D.; Wang, L.; Ren, Z.; Zhang, Q.; Su, J.; Zhang, Z. MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 2021, 87, 106151. [Google Scholar] [CrossRef]
- Liu, J.H.; Li, W.D.; Jia, J.; Tang, C.Y.; Wang, S.; Yu, P.; Zhang, Z.M.; Ke, K.; Bao, R.Y.; Liu, Z.Y.; et al. Structure-regenerated silk fibroin with boosted piezoelectricity for disposable and biodegradable oral healthcare device. Nano Energy 2022, 103, 107787. [Google Scholar] [CrossRef]
- Chen, Q.; Tang, H.; Liu, J.; Wang, R.; Sun, J.; Yao, J.; Shao, Z.; Chen, X. Silk-based pressure/temperature sensing bimodal ionotronic skin with stimulus discriminability and low temperature workability. Chem. Eng. J. 2021, 422, 130091. [Google Scholar] [CrossRef]
- Wang, X.; Bai, Z.; Zheng, M.; Yue, O.; Hou, M.; Cui, B.; Su, R.; Wei, C.; Liu, X. Engineered gelatin-based conductive hydrogels for flexible wearable electronic devices: Fundamentals and recent advances. J. Sci. Adv. Mater. Devices 2022, 7, 100451. [Google Scholar] [CrossRef]
- Chevenier, A.; Jouanneau, D.; Ficko-Blean, E. Carrageenan biosynthesis in red algae: A review. Cell Surf. 2023, 9, 100097. [Google Scholar] [CrossRef]
- Zaimis, U.; Ozolina, S.; Kukuskins, A. Recycled Algae Paper Density Control System for Quality Screening with Adjustable Light Source Wavelength. In Proceedings of the 21st International Scientific Conference on Engineering for Rural Development, Jelgava, Latvia, 25–27 May 2022; pp. 818–823. [Google Scholar]
- Tuvikene, R. Carrageenans. In Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2021; pp. 767–804. [Google Scholar] [CrossRef]
- Júnior, L.M.; Vieira, R.P.; Jamróz, E.; Anjos, C.A.R. Furcellaran: An innovative biopolymer in the production of films and coatings. Carbohydr. Polym. 2021, 252, 117221. [Google Scholar] [CrossRef]
- Yu, G.; Yang, B.; Ren, W.; Zhao, X.; Zhang, J.; Barrow, C. A comparative analysis of four kinds of polysaccharides purified from Furcellaria lumbricalis. J. Ocean Univ. China 2007, 6, 16–20. [Google Scholar] [CrossRef]
- Jayakody, M.M.; Vanniarachchy, M.P.G.; Wijesekara, I. Seaweed derived alginate, agar, and carrageenan based edible coatings and films for the food industry: A review. J. Food Meas. Charact. 2022, 16, 1195–1227. [Google Scholar] [CrossRef]
- Riyaz, S.M.; Inbakandan, D.; Manikandan, D.; Bhavadharani, P.; Elson, J.; Prabhu, N.S.; Dhas, T.S.; Nalini, S.; Latha, M.B.; Simal-Gandara, J. Microbiome in the ice-ice disease of the farmed red algae Kappaphycus alvarezii and degradation of extracted food carrageenan. Food Biosci. 2021, 42, 101138. [Google Scholar] [CrossRef]
- Nie, Z.; Peng, K.; Lin, L.; Yang, J.; Cheng, Z.; Gan, Q.; Chen, Y.; Feng, C. A conductive hydrogel based on nature polymer agar with self-healing ability and stretchability for flexible sensors. Chem. Eng. J. 2023, 454, 139843. [Google Scholar] [CrossRef]
- Therkelsen, G.H. CARRAGEENAN. In Industrial Gums Polysaccharides and Their Derivatives, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 145–180. [Google Scholar] [CrossRef]
- Kiran-Yildirim, B.; Hale, J.; Wefers, D.; Gaukel, V. Ice recrystallization inhibition of commercial κ-, ι-, and λ-carrageenans. J. Food Eng. 2021, 290, 110269. [Google Scholar] [CrossRef]
- Frediansyah, A. The antiviral activity of iota-, kappa-, and lambda-carrageenan against COVID-19: A critical review. Clin. Epidemiol. Glob. Heal. 2021, 12, 100826. [Google Scholar] [CrossRef] [PubMed]
- Muscolino, E.; Di Stefano, A.B.; Trapani, M.; Sabatino, M.A.; Giacomazza, D.; Alessi, S.; Cammarata, E.; Moschella, F.; Cordova, A.; Toia, F.; et al. κ-Carrageenan and PVA blends as bioinks to 3D print scaffolds for cartilage reconstruction. Int. J. Biol. Macromol. 2022, 222, 1861–1875. [Google Scholar] [CrossRef] [PubMed]
- Pahnavar, Z.; Ghaemy, M.; Naji, L.; Hasantabar, V. Self-extinguished and flexible cation exchange membranes based on modified K-Carrageenan/PVA double network hydrogels for electrochemical applications. Int. J. Biol. Macromol. 2023, 231, 123253. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Chang, Y.; Shen, J.; Chen, G.; Xue, C. A comparative investigation of anionic polysaccharides (sulfated fucan, ι-carrageenan, κ-carrageenan, and alginate) on the fabrication, stability, rheology, and digestion of multilayer emulsion. Food Hydrocoll. 2023, 134, 108081. [Google Scholar] [CrossRef]
- Bui, V.T.N.T.; Nguyen, B.T.; Nicolai, T.; Renou, F. Mixed iota and kappa carrageenan gels in the presence of both calcium and potassium ions. Carbohydr. Polym. 2019, 223, 115107. [Google Scholar] [CrossRef]
- Morris, E.R.; Rees, D.A.; Robinson, G. Cation-specific aggregation of carrageenan helices: Domain model of polymer gel structure. J. Mol. Biol. 1980, 138, 349–362. [Google Scholar] [CrossRef]
- Smidsrød, O.; Grasdalen, H. Some physical properties of carrageenan in solution and gel state. Carbohydr. Polym. 1982, 2, 270–272. [Google Scholar] [CrossRef]
- MacArtain, P.; Jacquier, J.C.; Dawson, K.A. Physical characteristics of calcium induced κ- carrageenan networks. Carbohydr. Polym. 2003, 53, 395–400. [Google Scholar] [CrossRef]
- Bussamra, B.C.; Sietaram, D.; Verheijen, P.; Mussatto, S.I.; da Costa, A.C.; van der Wielen, L.; Ottens, M. A critical assessment of the Flory-Huggins (FH) theory to predict aqueous two-phase behaviour. SePurif. Technol. 2021, 255, 117636. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, T.; Zheng, X.; Huang, Y.; Chen, Y.; Dan, W. High strength and bioactivity polyvinyl alcohol/collagen composite hydrogel with tannic acid as cross-linker. Polym. Eng. Sci. 2021, 61, 278–287. [Google Scholar] [CrossRef]
- Treloar, L. The Physics of Rubber Elasticity. 1975. Available online: https://books.google.com/books?hl=lt&lr=&id=EfCZXXKQ50wC&oi=fnd&pg=PR9&ots=qDNlWHuWpS&sig=6WAu8rCk_83D78d6r6sd8k-jJ7s (accessed on 25 August 2023).
- Dastjerdi, S.; Alibakhshi, A.; Akgöz, B.; Civalek, Ö. A Novel Nonlinear Elasticity Approach for Analysis of Nonlinear and Hyperelastic Structures. Eng. Anal. Bound. Elem. 2022, 143, 219–236. [Google Scholar] [CrossRef]
- Tao, K.; Chen, Z.; Yu, J.; Zeng, H.; Wu, J.; Wu, Z.; Jia, Q.; Li, P.; Fu, Y.; Chang, H.; et al. Ultra-Sensitive, Deformable, and Transparent Triboelectric Tactile Sensor Based on Micro-Pyramid Patterned Ionic Hydrogel for Interactive Human–Machine Interfaces. Adv. Sci. 2022, 9, 2104168. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.C.; Li, C.Y.; Du, M.; Song, Y.; Wu, Z.L.; Zheng, Q. Improved Toughness and Stability of κ-Carrageenan/Polyacrylamide Double-Network Hydrogels by Dual Cross-Linking of the First Network. Macromolecules 2019, 52, 629–638. [Google Scholar] [CrossRef]
- Zheng, G.; Gao, W.; Li, X.; Wu, Z.; Cao, L.A.; Feng, E.; Yang, Z. A κ-Carrageenan-Containing Organohydrogel with Adjustable Transmittance for an Antifreezing, Nondrying, and Solvent-Resistant Strain Sensor. Biomacromolecules 2022, 23, 4872–4882. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Huang, X.; Shi, J.; Liu, L.; Song, W.; Zhai, X.; Xiao, J.; Hashim, S.B.; Li, Z.; et al. A visual bi-layer sensor based on Agar/TiO2/butterfly bean flower anthocyanin/κ-carrageenan with photostability for monitoring Penaeus chinensis freshness. Int. J. Biol. Macromol. 2023, 235, 123706. [Google Scholar] [CrossRef]
- Li, X.; Xiang, S.; Ling, D.; Zhang, S.; Li, C.; Dai, R.; Zhu, P.; Liu, X.; Pan, Z. Stretchable, self-healing, transparent macromolecular elastomeric gel and PAM/carrageenan hydrogel for self-powered touch sensors. Mater. Sci. Eng. B 2022, 283, 115832. [Google Scholar] [CrossRef]
- Macedo, V.M.; Pereira, N.; Tubio, C.R.; Martins, P.; Lanceros-Mendez, S.; Costa, C.M. 3D-printed carrageenan-based nanocomposites for sustainable resistive sensing devices. Polymer 2022, 262, 125456. [Google Scholar] [CrossRef]
- Heydari, F.; Bakhtiarian, M.; Khodaei, M.M. Preparation of Fe3O4@Carrageenan-Metformin nanoparticles as a new bio-inspired magnetic nanocatalyst for the synthesis of dihydropyrano[2,3-c]pyrazoles. Mater. Sci. Eng. B 2023, 296, 116686. [Google Scholar] [CrossRef]
- Oya, K.; Tsuru, T.; Teramoto, Y.; Nishio, Y. Nanoincorporation of iron oxides into carrageenan gels and magnetometric and morphological characterizations of the composite products. Polym. J. 2013, 45, 824–833. [Google Scholar] [CrossRef]
- Chang, Y.C.; Lin, C.H.; Liu, H.J.; Jian, J.C. Biodegradable resistive switching devices made from carrageenan insulator and carrageenan substrate. Org. Electron. 2023, 120, 106818. [Google Scholar] [CrossRef]
- Hosny, N.M.; Sherif, Y.E. Synthesis, optical band gap and anti-rheumatic activity of Fe2O3 nanocrystals via solid state decomposition of 4-aminophenol precursor. Chem. Data Collect. 2022, 37, 100813. [Google Scholar] [CrossRef]
- Prasad, K.; Meena, R.; Siddhanta, A.K. Microwave-induced rapid one-pot synthesis of κ-carrageenan-g-PMMA copolymer by potassium persulphate initiating system. J. Appl. Polym. Sci. 2006, 101, 161–166. [Google Scholar] [CrossRef]
- Machala, L.; Zboril, R.; Gedanken, A. Amorphous iron(III) oxide—A review. J. Phys. Chem. B 2007, 111, 4003–4018. [Google Scholar] [CrossRef]
- Taneja, L.; Kochar, C.; Yadav, P.K.; Yadav, M.; Tripathy, S.S. Enhancement of surface area of iron oxide modified by natural moieties towards defluoridation from water and antibacterial properties. Groundw. Sustain. Dev. 2023, 22, 100954. [Google Scholar] [CrossRef]
- Pishnamazi, M.; Selakjani, P.P.; Abarati, M.N.; Pishnamazi, M.; Nouri, A.; Kharazi, H.H.; Marjani, A. κ-Carrageenan-Fe2O3 superporous composite adsorbent beads for application in magnetic field expanded bed chromatography adsorption. J. Mol. Liq. 2020, 319, 114194. [Google Scholar] [CrossRef]
- Feng, S.; Guo, J.; Guan, F.; Sun, J.; Song, X.; He, J.; Yang, Q. Preparation of 3D printable polyvinyl alcohol based conductive hydrogels via incorporating k-carrageenan for flexible strain sensors. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132141. [Google Scholar] [CrossRef]
- Matusiak, J.; Grządka, E.; Kowalczuk, A.; Pietruszka, R.; Godlewski, M. The influence of hydrocarbon, fluorinated and silicone surfactants on the adsorption, stability and electrokinetic properties of the κ-carrageenan/alumina system. J. Mol. Liq. 2020, 314, 113669. [Google Scholar] [CrossRef]
- Nylander, T.; Samoshina, Y.; Lindman, B. Formation of polyelectrolyte–surfactant complexes on surfaces. Adv. Colloid Interface Sci. 2006, 123–126, 105–123. [Google Scholar] [CrossRef] [PubMed]
- Ozolina, S.; Zaimis, U. Some Aspects of Extraction and Application of Seaweed Furcellaria Lumbricalis Carrageenan in Production of Recycled Paper. In Proceedings of the 21st International Scientific Conference on Engineering for Rural Development, Jelgava, Latvia, 25–27 May 2022; pp. 618–622. [Google Scholar]
- Bučas, M.; Daunys, D.; Olenin, S. Overgrowth patterns of the red algae Furcellaria lumbricalis at an exposed Baltic Sea coast: The results of a remote underwater video data analysis. Estuar. Coast. Shelf Sci. 2007, 75, 308–316. [Google Scholar] [CrossRef]
- Šutinys, E.; Dzedzickis, A.; Samukaitė-Bubnienė, U.; Bučinskas, V. Novel synthetic iron (III) oxide-based force sensor. Sens. Actuators A Phys. 2021, 331, 113043. [Google Scholar] [CrossRef]
- Klinski-Wetzel, K.V.; Kowanda, C.; Heilmaier, M.; Mueller, F.E.H. The influence of microstructural features on the electrical conductivity of solid phase sintered CuCr composites. J. Alloys Compd. 2015, 631, 237–247. [Google Scholar] [CrossRef]
- Warnes, B.M.; Aplan, F.F.; Simkovich, G. Electrical conductivity and seebeck voltage of Fe2O3, pure and doped, as a function of temperature and oxygen pressure. Solid State Ion. 1984, 12, 271–276. [Google Scholar] [CrossRef]
- Gardner, R.F.G.; Sweett, F.; Tanner, D.W. The electrical properties of alpha ferric oxide—I.: The impure oxide. J. Phys. Chem. Solids 1963, 24, 1175–1181. [Google Scholar] [CrossRef]
- Dal, H.; Denli, F.A.; Açan, A.K.; Kaliske, M.; Ka, A. Data-Driven Hyperelasticity-Part I: A Canonical Isotropic Formulation for Rubberlike Materials. J. Mech. Phys. Solids 2023, 179, 105381. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žaimis, U.; Petronienė, J.J.; Dzedzickis, A.; Bučinskas, V. Biodegradable Carrageenan-Based Force Sensor: An Experimental Approach. Sensors 2023, 23, 9423. https://doi.org/10.3390/s23239423
Žaimis U, Petronienė JJ, Dzedzickis A, Bučinskas V. Biodegradable Carrageenan-Based Force Sensor: An Experimental Approach. Sensors. 2023; 23(23):9423. https://doi.org/10.3390/s23239423
Chicago/Turabian StyleŽaimis, Uldis, Jūratė Jolanta Petronienė, Andrius Dzedzickis, and Vytautas Bučinskas. 2023. "Biodegradable Carrageenan-Based Force Sensor: An Experimental Approach" Sensors 23, no. 23: 9423. https://doi.org/10.3390/s23239423
APA StyleŽaimis, U., Petronienė, J. J., Dzedzickis, A., & Bučinskas, V. (2023). Biodegradable Carrageenan-Based Force Sensor: An Experimental Approach. Sensors, 23(23), 9423. https://doi.org/10.3390/s23239423