All-Optical, Air-Coupled Ultrasonic Detection of Low-Pressure Gas Leaks and Observation of Jet Tones in the MHz Range
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Observation of Jet Tones in the MHz Frequency Range
3.2. Broadband Leak Detection
3.3. Omnidirectional Detection
4. Discussion
- i.
- Pressurized gas flows into the needle through an orifice termed the ‘vena contracta’ [12], which is an effective aperture of diameter δ, being slightly smaller than the inner diameter of the needle (e.g., δ~0.63 d). This orifice represents the primary obstruction in the flow path and is, thus, the appropriate characteristic dimension to use in calculation of Re and St.
- ii.
- For low Re, flow in the syringe needle is laminar, and negligible acoustic emissions are observed. Above some critical value of Re, however, eddies are expected to form near the needle entrance, resulting in a vortex trail forming along the inside walls of the ‘pipe’ and flowing in the downstream direction [10]. Within a certain range of Re, this vortex trail is approximately periodic, resulting in the emission of harmonically related jet tones at the exit aperture of the needle. Notably, both harmonics and sub-harmonics of the vortex-shedding frequency can be observed in the acoustic spectrum within this ‘jet tone’ regime, as observed and explained by Anderson [9].
- iii.
- For sufficiently high Re, the vortex formation becomes increasingly chaotic, and the flow becomes increasingly turbulent. In this regime, jet tones are subsumed into a broad background of ‘white’ noise, and the power spectral density of this ‘turbulent noise’ continues to increase as the flow (i.e., Re) is increased.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blake, W.K.; Powell, A. Development of Contemporary Views of Flow-Tone Generation; Springer: New York, NY, USA, 1986; pp. 247–325. [Google Scholar]
- Shadle, C.H. Experiments on the Acoustics of Whistling. Phys. Teach. 1983, 21, 148–154. [Google Scholar] [CrossRef]
- Chanaud, R.C. Aerodynamic Whistles. Sci. Am. 1970, 222, 40–47. [Google Scholar] [CrossRef]
- Fletcher, N.H.; Thwaites, S. The Physics of Pipe Organs. Sci. Am. 1983, 248, 94–103. [Google Scholar] [CrossRef]
- Fletcher, N.H.; Rossing, T.D. The Physics of Musical Instruments; Springer: New York, NY, USA, 1998. [Google Scholar]
- Campos, L.M.B.C. On Waves in Gases. Part I: Acoustics of Jets, Turbulence, and Ducts. Rev. Mod. Phys. 1986, 58, 117. [Google Scholar] [CrossRef]
- Venugopal, A.; Agrawal, A.; Prabhu, S.V. Review on Vortex Flowmeter—Designer Perspective. Sens. Actuators A Phys. 2011, 170, 8–23. [Google Scholar] [CrossRef]
- Anderson, A.B.C. A Circular-Orifice Number Describing Dependency of Primary Pfeifenton Frequency on Differential Pressure, Gas Density, and Orifice Geometry. J. Acoust. Soc. Am. 1953, 25, 626–631. [Google Scholar] [CrossRef]
- Anderson, A.B.C. A Jet-Tone Orifice Number for Orifices of Small Thickness-Diameter Ratio. J. Acoust. Soc. Am. 1954, 26, 21–25. [Google Scholar] [CrossRef]
- Anderson, A.B.C. Metastable Jet-Tone States of Jets from Sharp-Edged, Circular, Pipe-Like Orifices. J. Acoust. Soc. Am. 1955, 27, 13–21. [Google Scholar] [CrossRef]
- Anderson, A.B.C. Vortex-Ring Structure-Transition in a Jet Emitting Discrete Acoustic Frequencies. J. Acoust. Soc. Am. 1956, 28, 914–921. [Google Scholar] [CrossRef]
- Thomas, N. On the Production of Sound by Jets. J. Acoust. Soc. Am. 1955, 27, 446–448. [Google Scholar] [CrossRef]
- Jothi, T.J.S.; Srinivasan, K. Transonic Resonance Tones in Orifice and Pipe Jets. Int. J. Aeroacoustics 2013, 12, 103–121. [Google Scholar] [CrossRef]
- Anderson, A.B.C. Dependence of Pfeifenton (Pipe Tone) Frequency on Pipe Length, Orifice Diameter, and Gas Discharge Pressure. J. Acoust. Soc. Am. 1952, 24, 675–681. [Google Scholar] [CrossRef]
- Anderson, A.B.C. Structure and Velocity of the Periodic Vortex-Ring Flow Pattern of a Primary Pfeifenton (Pipe Tone) Jet. J. Acoust. Soc. Am. 1955, 27, 1048–1053. [Google Scholar] [CrossRef]
- Hornig, G.J.; Scheuer, K.G.; Dew, E.B.; Zemp, R.; DeCorby, R.G. Ultrasound Sensing at Thermomechanical Limits with Optomechanical Buckled-Dome Microcavities. Opt. Express 2022, 30, 33083–33096. [Google Scholar] [CrossRef]
- Potts, C.A.; Melnyk, A.; Ramp, H.; Bitarafan, M.H.; Vick, D.; LeBlanc, L.J.; Davis, J.P.; DeCorby, R.G. Tunable Open-Access Microcavities for on-Chip Cavity Quantum Electrodynamics. Appl. Phys. Lett. 2016, 108, 041103. [Google Scholar] [CrossRef] [Green Version]
- Bitarafan, M.H.; DeCorby, R.G. Small-Mode-Volume, Channel-Connected Fabry–Perot Microcavities on a Chip. Appl. Opt. 2017, 56, 9992. [Google Scholar] [CrossRef]
- Bitarafan, M.; DeCorby, R. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information. Sensors 2017, 17, 1748. [Google Scholar] [CrossRef] [Green Version]
- Maldaner, J.; Al-Sumaidae, S.; Hornig, G.J.; LeBlanc, L.J.; DeCorby, R.G. Liquid Infiltration of Monolithic Open-Access Fabry–Perot Microcavities. Appl. Opt. 2020, 59, 7125. [Google Scholar] [CrossRef]
- Hornig, G.; DeCorby, R.; Bu, L.; Alsumaidae, S. Monolithic Elliptical Dome Fabry-Perot Microcavities Exhibiting Large Birefringence. J. Opt. Soc. Am. B 2022, 39, 884–890. [Google Scholar] [CrossRef]
- Al-Sumaidae, S.; Bu, L.; Hornig, G.J.; Bitarafan, M.H.; DeCorby, R.G. Pressure Sensing with High-Finesse Monolithic Buckled-Dome Microcavities. Appl. Opt. 2021, 60, 9219. [Google Scholar] [CrossRef]
- Hornig, G.J.; Scheuer, K.G.; DeCorby, R.G. Observation of Thermal Acoustic Modes of a Droplet Coupled to an Optomechanical Sensor. arXiv 2023, arXiv:2305.13392. [Google Scholar]
- Hansen, S.T.; Ergun, A.S.; Liou, W.; Auld, B.A.; Khuri-Yakub, B.T. Wideband Micromachined Capacitive Microphones with Radio Frequency Detection. J. Acoust. Soc. Am. 2004, 116, 828–842. [Google Scholar] [CrossRef] [Green Version]
- Kuntzman, M.L.; Hall, N.A. A Broadband, Capacitive, Surface-Micromachined, Omnidirectional Microphone with More than 200 KHz Bandwidth. J. Acoust. Soc. Am. 2014, 135, 3416–3424. [Google Scholar] [CrossRef]
- Basiri-Esfahani, S.; Armin, A.; Forstner, S.; Bowen, W.P. Precision Ultrasound Sensing on a Chip. Nat. Commun. 2019, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, E.; Baliga, S. Expanding the Use of Ultrasonic Gas Leak Detectors: A Review of Gas Release Characteristics for Adequate Detection. Gases Instrum. 2009, 7, 24–29. [Google Scholar]
- Raichel, D.R. The Science and Applications of Acoustics, 2nd ed.; Springer: New York, NY, USA, 2006; ISBN 9780387260624. [Google Scholar]
- Lighthill, M.J. Jet Noise. AIAA J. 1963, 1, 1507–1517. [Google Scholar] [CrossRef]
- Karabasov, S.A. Understanding Jet Noise. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3593–3608. [Google Scholar] [CrossRef] [Green Version]
- Mu, G.; Lyu, Q.; Li, Y. An Analysis of Jet Noise Characteristics in the Compressible Turbulent Mixing Layer of a Standard Nozzle. Machines 2022, 10, 826. [Google Scholar] [CrossRef]
- Masovic, D.; Sarradj, E. Derivation of Lighthill’s Eighth Power Law of an Aeroacoustic Quadrupole in Acoustic Spacetime. Acoustics 2020, 2, 666–673. [Google Scholar] [CrossRef]
- Mostafapour, A.; Davoudi, S. Analysis of Leakage in High Pressure Pipe Using Acoustic Emission Method. Appl. Acoust. 2013, 74, 335–342. [Google Scholar] [CrossRef]
- Murvay, P.S.; Silea, I. A Survey on Gas Leak Detection and Localization Techniques. J. Loss Prev. Process Ind. 2012, 25, 966–973. [Google Scholar] [CrossRef]
- Meribout, M.; Khezzar, L.; Azzi, A.; Ghendour, N. Leak Detection Systems in Oil and Gas Fields: Present Trends and Future Prospects. Flow Meas. Instrum. 2020, 75, 101772. [Google Scholar] [CrossRef]
- Guenther, T.; Kroll, A. Automated Detection of Compressed Air Leaks Using a Scanning Ultrasonic Sensor System. In Proceedings of the 2016 IEEE Sensors Applications Symposium (SAS), Catania, Italy, 20–22 April 2016; pp. 116–121. [Google Scholar] [CrossRef]
- Lee, J.C.; Choi, Y.R.; Cho, J.W. Pipe Leakage Detection Using Ultrasonic Acoustic Signals. Sens. Actuators A Phys. 2023, 349, 114061. [Google Scholar] [CrossRef]
- Zuo, J.; Zhang, Y.; Xu, H.; Zhu, X.; Zhao, Z.; Wei, X.; Wang, X. Pipeline Leak Detection Technology Based on Distributed Optical Fiber Acoustic Sensing System. IEEE Access 2020, 8, 30789–30796. [Google Scholar] [CrossRef]
- Wildi, T.; Voumard, T.; Brasch, V.; Yilmaz, G.; Herr, T. Photo-Acoustic Dual-Frequency Comb Spectroscopy. Nat. Commun. 2020, 11, 4164. [Google Scholar] [CrossRef]
- Picqué, N.; Hänsch, T.W. Frequency Comb Spectroscopy. Nat. Photonics 2019, 13, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Bitarafan, M.H.; Ramp, H.; Allen, T.W.; PoBs, C.; Rojas, X.; MacDonald, A.J.R.; Davis, J.P.; DeCorby, R.G. Thermomechanical Characterization of On-Chip Buckled Dome Fabry–Perot Microcavities. J. Opt. Soc. Am. B 2015, 32, 1214. [Google Scholar] [CrossRef] [Green Version]
Gauge | Inner Diameter (mm) | Outer Diameter (mm) | Length (mm) |
---|---|---|---|
22 | 0.413 | 0.7176 | 38 |
26 | 0.260 | 0.4636 | 13 |
30 | 0.159 | 0.3112 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheuer, K.G.; DeCorby, R.G. All-Optical, Air-Coupled Ultrasonic Detection of Low-Pressure Gas Leaks and Observation of Jet Tones in the MHz Range. Sensors 2023, 23, 5665. https://doi.org/10.3390/s23125665
Scheuer KG, DeCorby RG. All-Optical, Air-Coupled Ultrasonic Detection of Low-Pressure Gas Leaks and Observation of Jet Tones in the MHz Range. Sensors. 2023; 23(12):5665. https://doi.org/10.3390/s23125665
Chicago/Turabian StyleScheuer, Kyle G., and Ray G. DeCorby. 2023. "All-Optical, Air-Coupled Ultrasonic Detection of Low-Pressure Gas Leaks and Observation of Jet Tones in the MHz Range" Sensors 23, no. 12: 5665. https://doi.org/10.3390/s23125665