Triple-Band Reconfigurable Monopole Antenna for Long-Range IoT Applications
Abstract
:1. Introduction
2. Design Methodology
2.1. Theory and Geometry of the Antenna
2.2. Frequency Switching Techniques
3. Results and Analysis
3.1. Return Loss
3.1.1. Parametric Studies
3.1.2. Distribution of Surface Current
3.1.3. Radiation Pattern, Gain and Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huh, H.; Kim, J.Y. LoRa-based mesh network for IoT applications. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 524–527. [Google Scholar]
- Ribeiro, L.E.; Tokikawa, D.W.; Rebelatto, J.L.; Brante, G. Comparison between LoRa and NB-IoT coverage in urban and rural Southern Brazil regions. Ann. Telecommun. 2019, 75, 755–766. [Google Scholar] [CrossRef]
- Hammi, B.; Khatoun, R.; Zeadally, S.; Fayad, A.; Khoukhi, L. IoT technologies for smart cities. IET Netw. 2017, 7, 1–13. [Google Scholar]
- Bouguera, T.; Diouris, J.F.; Chaillout, J.J.; Jaouadi, R.; Andrieux, G. Energy consumption model for sensor nodes based on LoRa and LoRaWAN. Sensors 2018, 18, 2104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zourm, A.; Hing, A.L.K.; Hung, C.W.; AbdulRehman, M. Internet of things (IoT) using LoRa technology. In Proceedings of the 2019 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Selangor, Malaysia, 29 June 2019; pp. 324–330. [Google Scholar]
- Khutsoane, O.; Isong, B.; Abu-Mahfouz, A.M. IoT devices and applications based on LoRa/LoRaWAN. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 6107–6112. [Google Scholar]
- Zhang, Q.; Gao, Y. Embedded antenna design on LoRa radio for IoT applications. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
- Trinh, L.H.; Nguyen, T.Q.K.; Tran, H.L.; Nguyen, P.C.; Truong, N.V.; Ferrero, F. Low-profile horizontal omni-directional antenna for LoRa wearable devices. In Proceedings of the 2017 International Conference on Advanced Technologies for Communications (ATC), Quy Nhon, Vietnam, 18–20 October 2017; pp. 136–139. [Google Scholar]
- Chaudhari, P.; Tiwari, A.K.; Pattewar, S.; Shelke, S.N. Smart infrastructure monitoring using LoRaWAN technology. In Proceedings of the 2021 International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry, India, 30–31 July 2021; pp. 1–6. [Google Scholar]
- Tyagi, D.; Kumar, S.; Kumar, R. Multifunctional Antenna Design for Internet of Things Applications. In Proceedings of the 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19–20 March 2021; Volume 1, pp. 557–560. [Google Scholar]
- Haque, M.A.; Sarker, N.; Sawaran Singh, N.S.; Rahman, M.A.; Hasan, M.N.; Islam, M.; Zakariya, M.A.; Paul, L.C.; Sharker, A.H.; Abro, G.E.M.; et al. Dual Band Antenna Design and Prediction of Resonance Frequency Using Machine Learning Approaches. Appl. Sci. 2022, 12, 10505. [Google Scholar] [CrossRef]
- Rahaman, I.; Jafor, M.S.; Singh, N.S.S.; Haque, M.A.; Biswas, A.K.; Rahman, M.A.; Zakariya, M.A.B.; Abro, G.E.M.; Sarker, N. Performance Investigation of Linearly Arranged Circular, Circular Planer, Rectangular, and Concentric Circular Antenna Arrays Using Robust NVL Techniques. Appl. Sci. 2022, 12, 11481. [Google Scholar] [CrossRef]
- Yahya, M.S.; Dalyop, I.A.; Saleh, Y.; Aminu-Baba, M. Antenna for 5G mobile communications systems at 10 GHz. Int. J. Eng. Technol. 2018, 7, 13–15. [Google Scholar] [CrossRef]
- Yahya, M.S.; Soeung, S.; Chinda, F.E.; Sovuthy, C.; Nor, N.B.; Rahim, S.K.A.; Musa, U. A Compact Dual Band Microstrip Patch Antenna for LoRa IoT Applications. In Proceedings of the 2022 IEEE International RF and Microwave Conference (RFM), Kuala Lumpur, Malaysia, 19–21 December 2022; pp. 1–4. [Google Scholar]
- Roges, R.; Malik, P.K.; Sharma, S. A compact CPW-fed log-periodic antenna for IoT applications. In Proceedings of the 2021 International Conference on Communication, Control and Information Sciences (ICCISc), Idukki, India, 16–18 June 2021; Volume 1, pp. 1–5. [Google Scholar]
- Ferrero, F.; Toure, M.B. Dual-band lora antenna: Design and experiments. In Proceedings of the 2019 IEEE Conference on Antenna Measurements & Applications (CAMA), Kuta, Bali, Indonesia, 23–25 October 2019; pp. 243–246. [Google Scholar]
- Awan, W.A.; Naqvi, S.I.; Ali, W.A.E.; Hussain, N.; Iqbal, A.; Tran, H.H.; Alibakhshikenari, M.; Limiti, E. Design and realization of a frequency reconfigurable antenna with wide, dual, and single-band operations for compact sized wireless applications. Electronics 2021, 10, 1321. [Google Scholar] [CrossRef]
- Ullah, S.; Hayat, S.; Umar, A.; Ali, U.; Tahir, F.A.; Flint, J.A. Design, fabrication and measurement of triple band frequency reconfigurable antennas for portable wireless communications. AEU Int. J. Electron. Commun. 2017, 81, 236–242. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Fang, D.G. Antenna Theory and Microstrip Antennas; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Sani Yahya, M.; Rahim, S.K.A. 15 GHz grid array antenna for 5G mobile communications system. Microw. Opt. Technol. Lett. 2016, 58, 2977–2980. [Google Scholar] [CrossRef]
- Mushtaq, A.; Gupta, S.H.; Rajawat, A. Design and performance analysis of LoRa LPWAN antenna for IoT applications. In Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28 February 2020; pp. 1153–1156. [Google Scholar]
- Dala, A.; Arslan, T. Design, implementation, and measurement procedure of underwater and water surface antenna for Lora communication. Sensors 2021, 21, 1337. [Google Scholar] [CrossRef] [PubMed]
- Wanpare, W.; Paisal, A.; Chalermwisutkul, S. A Compact 923 MHz Monopole Antenna for LoRaWAN IoT Applications. In Proceedings of the 2020 International Conference on Power, Energy and Innovations (ICPEI), Chiangmai, Thailand, 14–16 October 2020; pp. 53–56. [Google Scholar]
- Pandey, A.; Nair, M.D. Inset fed miniaturized antenna with defected ground plane for LoRa applications. Procedia Comput. Sci. 2020, 171, 2115–2120. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Pierezan, J.; Mariani, V.C.; Coelho, L.S.; Sarigiannidis, P.; Koulouridis, S.; Goudos, S.K. Multiband patch antenna design using nature-inspired optimization method. IEEE Open J. Antennas Propag. 2020, 2, 151–162. [Google Scholar] [CrossRef]
- Tarbouch, M.; Reha, A.; El Amri, A.; Mejdoub, Y. A Compact PIFA Antenna for Internet of Things Network LORAWAN at 900 Mhz Band. In Colloque sur les Objets et Systèmes Connectés; Institut Universitaire de Technologie d’Aix-Marseille: Casablanca, Morocco, 2019. [Google Scholar]
- Boursianis, A.D.; Goudos, S.K.; Yioultsis, T.V.; Siakavara, K. Low-cost dual-band e-shaped patch antenna for energy harvesting applications using grey Wolf optimizer. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Reha, A.; Tarbouch, M.; El Amri, A. A Dual Band Compact PIFA Antenna for Internet of Things Networks Sigfox, Lorawan and Zigbee. In Proceedings of the Colloque sur les Objets et systèmes Connectés, Casablanca, Morocco, 17–18 June 2019; Institut Universitaire de Technologie d’Aix-Marseille: Casablanca, Morocco, 2019. [Google Scholar]
- Krishna, M.V.; Raju, G.S.N. Triangle Shaped Antenna Design for IoT-based Lorawan Applications. SAMRIDDHI J. Phys. Sci. Eng. Technol. 2021, 13, 8–11. [Google Scholar] [CrossRef]
- Trinh, L.H.; Nguyen, T.Q.K.; Phan, D.D.; Tran, V.Q.; Bui, V.X.; Truong, N.V.; Ferrero, F. Miniature antenna for IoT devices using LoRa technology. In Proceedings of the 2017 International Conference on Advanced Technologies for Communications (ATC), Quy Nhon, Vietnam, 18–20 October 2017; pp. 170–173. [Google Scholar]
- Shin, G.; Park, T.R.; Park, J.; Lee, S.K.; Kim, G.; Yoon, I.J. Sustaining the Radiation Properties of a 900-MHz-Band Planar LoRa Antenna Using a 2-by-2 Thin EBG Ground Plane. IEEE Access 2020, 8, 145586–145592. [Google Scholar] [CrossRef]
- Wang, Y.; Santamaria, L.; Ferrero, F.; Lizzi, L. Design of a Multi-Antenna Portable IoT Terminal. In Proceedings of the 2021 IEEE Conference on Antenna Measurements & Applications (CAMA), Antibes Juan-les-Pins, France, 15–17 November 2021; pp. 597–599. [Google Scholar]
- Bouyedda, A.; Barelaud, B.; Gineste, L. Design and realization of an UHF frequency reconfigurable antenna for hybrid connectivity LPWAN and LEO satellite networks. Sensors 2021, 21, 5466. [Google Scholar] [CrossRef]
- Ibrahim, N.F.; Dzabletey, P.A.; Kim, H.; Chung, J.Y. An All-Textile Dual-Band Antenna for BLE and LoRa Wireless Communications. Electronics 2021, 10, 2967. [Google Scholar] [CrossRef]
- Ngamjanvaporn, P.; Phongcharoenpanich, C.; Krairiksh, M. A Beam-Scanning Array Antenna for LPWAN Base Station. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 473–474. [Google Scholar]
- Putra, N.A.; Hasbi, W.; Manggala, M.P.; Kusmara, D.U.; Putri, W.M.; Triyogi, R.; Wirakusuma, M.P. Design of CubeSat Microstrip Antenna with Metamaterial Structure for LoRa Communication. In Proceedings of the 2021 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Bali, Indonesia, 3–4 November 2021; pp. 1–5. [Google Scholar]
- Turkmen, C.; Bakirli, Y.; Secmen, M.; Altuntas, M. Printed quasi yagi antenna with closely spaced and thick directors for triple ISM-band/wideband applications at UHF. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 677–678. [Google Scholar]
- Shin, G.; Park, J.; Park, T.R.; Yoon, I.J. Compact 900-MHz LoRa Band Antenna On a Low-Profile AMC Surface. In Proceedings of the 2019 International Symposium on Antennas and Propagation (ISAP), Xi’an, China, 27–30 October 2019; pp. 1–2. [Google Scholar]
- Wang, X.; Xing, L.; Wang, H. A wearable textile antenna for lora applications. In Proceedings of the 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, 18–20 August 2021; pp. 613–615. [Google Scholar]
- Haydhah, S.A.; Ferrero, F.; Lizzi, L.; Sharawi, M.S.; Zerguine, A. A multifunctional compact pattern reconfigurable antenna with four radiation patterns for sub-GHz IoT applications. IEEE Open J. Antennas Propag. 2021, 2, 613–622. [Google Scholar] [CrossRef]
- Roges, R.; Malik, P.K.; Sharma, S. A Compact Wideband Antenna with DGS for IoT Applications Using LoRa Technology. In Proceedings of the 2022 10th International Conference on Emerging Trends in Engineering and Technology-Signal and Information Processing (ICETET-SIP-22), Nagpur, India, 29–30 April 2022; pp. 1–4. [Google Scholar]
- Sayidmarie, K.H.; Yahya, L.S. Design and analysis of dual band crescent shape monopole antenna for WLAN applications. Int. J. Electromagn. Appl. 2013, 3, 96–102. [Google Scholar]
- Yahya, L.S.; Sayidmarie, K.H.; Elmegri, F.; Abd-Alhameed, R.A. Crescent-shaped double-monopole antennas with reduced coupling for WLAN and WIMAX applications. In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; pp. 393–398. [Google Scholar]
- Nikam, P.B.; Kumar, J.; Baidya, A.; Ghosh, A. Low-profile bandwidth and E-plane radiation pattern reconfigurable patch antenna for sub-6 GHz 5G applications. AEU Int. J. Electron. Commun. 2022, 157, 154415. [Google Scholar] [CrossRef]
- Musa, U.; Shah, S.M.; Majid, H.A.; Abidin, Z.Z.; Yahya, M.S.; Babani, S.; Yunusa, Z. Recent Advancement of Wearable Reconfigurable Antenna Technologies: A Review. IEEE Access 2022, 10, 121831–121863. [Google Scholar] [CrossRef]
Diode | D1 | D2 | Frequency (MHz) | (dB) Simulation | Measurement |
---|---|---|---|---|---|
State | ON | ON | 915 | −45.9 | −18.9 |
ON | OFF | 433 | −35.8 | −19.9 | |
OFF | ON | 868 | −33.9 | −18.1 |
Ref. | Year | Bands | Frequency | Substrate | Conductor | Gain | Reconfi- | All LoRa | Size |
---|---|---|---|---|---|---|---|---|---|
(MHz) | Material | Material | (dBi) | Gurable? | Frequencies? | (mm2) | |||
[7] | 2018 | 1 | 402.4–441.6 | FR-4 (NA *) | Copper | −6 | NO | YES | 125 × 20 |
[23] | 2021 | 1 | 868 | FR-4 (4.3) | Copper | 2.11 | NO | YES | 120 × 70 |
[25] | 2020 | 1 | 871 | FR-4 (4.4) | Copper | 0.58 | NO | YES | 67.7 × 55 |
[27] | 2019 | 1 | 848–950 | FR-4 (4.4) | Copper | 2.1 | NO | YES | 40 × 26 |
[29] | 2019 | 2 | 868 | FR-4 (4.4) | Copper | 1.92 | NO | NO | 100 × 40 |
2400 | 4.2 | ||||||||
[30] | 2021 | 2 | 400 | FR-4 (NA) | Copper | NO | YES | 160 × 170 | |
900.2 | |||||||||
[34] | 2021 | 3 | 401 | FR-4 (4.7) | Copper | NO | YES | 78 × 88 | |
466 | |||||||||
868 | |||||||||
[41] | 2021 | 1 | 868 | FR-4 (4.4) | Copper | 1.6 | YES | YES | 80 × 55 |
[42] | 2022 | Wide band | 151.9–1080 | FR-4 (4.4) | Copper | 2.56 | NO | YES | 22 × 34 |
This work | 2023 | 3 | 433 | FR-4 (4.4) | Copper | 2 | YES | YES | 80 × 50 |
868 | 1.9 | ||||||||
915 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yahya, M.S.; Soeung, S.; Singh, N.S.S.; Yunusa, Z.; Chinda, F.E.; Rahim, S.K.A.; Musa, U.; Nor, N.B.M.; Sovuthy, C.; Abro, G.E.M. Triple-Band Reconfigurable Monopole Antenna for Long-Range IoT Applications. Sensors 2023, 23, 5359. https://doi.org/10.3390/s23125359
Yahya MS, Soeung S, Singh NSS, Yunusa Z, Chinda FE, Rahim SKA, Musa U, Nor NBM, Sovuthy C, Abro GEM. Triple-Band Reconfigurable Monopole Antenna for Long-Range IoT Applications. Sensors. 2023; 23(12):5359. https://doi.org/10.3390/s23125359
Chicago/Turabian StyleYahya, Muhammad Sani, Socheatra Soeung, Narinderjit Singh Sawaran Singh, Zainab Yunusa, Francis Emmanuel Chinda, Sharul Kamal Abdul Rahim, Umar Musa, Nursyarizal B. M. Nor, Cheab Sovuthy, and Ghulam E. Mustafa Abro. 2023. "Triple-Band Reconfigurable Monopole Antenna for Long-Range IoT Applications" Sensors 23, no. 12: 5359. https://doi.org/10.3390/s23125359
APA StyleYahya, M. S., Soeung, S., Singh, N. S. S., Yunusa, Z., Chinda, F. E., Rahim, S. K. A., Musa, U., Nor, N. B. M., Sovuthy, C., & Abro, G. E. M. (2023). Triple-Band Reconfigurable Monopole Antenna for Long-Range IoT Applications. Sensors, 23(12), 5359. https://doi.org/10.3390/s23125359