Compact Wideband Tapered Slot Antenna Using Fan-Shaped and Stepped Structures for Chipless Radio-Frequency-Identification Sensor Tag Applications
Abstract
:1. Introduction
2. Miniaturization Using Fan-Shaped Structures
3. Miniaturization Using Fan-Shaped and Stepped Structures
4. Experiment Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jabbar, A.; Jamshed, M.A.; Shawky, M.A.; Abbasi, Q.H.; Imran, M.A.; Rehman, M.U. Multi-gigabit millimeter-wave industrial communication: A solution for industry 4.0 and beyond. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 5001–5006. [Google Scholar]
- Turab, M.; Jamil, S. A comprehensive survey of digital twins in healthcare in the era of metaverse. BioMedInformatics 2023, 3, 563–584. [Google Scholar] [CrossRef]
- Schantz, H. The Art and Science of Ultra-Wideband Antennas; Artech House: Norwood, MA, USA, 2005; pp. 30–32. [Google Scholar]
- Denidni, T.A.; Augustin, G. Ultrawideband Antennas for Microwave Imaging Systems; Artech House: Norwood, MA, USA, 2014; pp. 45–47. [Google Scholar]
- Waterhouse, R. Printed Antennas for Wireless Communications; John Wiley & Sons Ltd.: Chichester, UK, 2007; pp. 162–165. [Google Scholar]
- Eberle, J.; Levis, C.; McCoy, D. The flared slot: A moderately directive flush-mounted broad-band antenna. IRE Trans. Antennas Propag. 1960, 8, 461–468. [Google Scholar] [CrossRef]
- Gibson, P.J. The Vivaldi aerial. In Proceedings of the 9th European Microwave Conference, Brighton, UK, 17–21 September 1979; pp. 101–105. [Google Scholar]
- Wu, B.; Ji, Y.; Fang, G. Design and measurement of compact tapered slot antenna for UWB microwave imaging radar. In Proceedings of the 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 2226–2229. [Google Scholar]
- Yadav, A.; Kumar Singh, V.; Kumar Bhoi, A.; Marques, G.; Garcia-Zapirain, B.; de la Torre Díez, I. Wireless body area networks: UWB wearable textile antenna for telemedicine and mobile health systems. Micromachines 2020, 11, 558. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Alshoudokhi, Y.A.; Behairy, H.M.; Alshareef, M.R.; Alshebeili, S.A.; Issa, K.; Fathallah, H. Design and analysis of multi-resonators loaded broadband antipodal tapered slot antenna for chipless RFID applications. IEEE Access 2017, 5, 25798–25807. [Google Scholar] [CrossRef]
- Saleh, S.; Jamaluddin, M.H.; Razzaz, F.; Saeed, S.M.; Timmons, N.; Morrison, J. Compactness and performance enhancement techniques of ultra-wideband tapered slot antenna: A comprehensive review. Alex. Eng. J. 2023, 74, 195–229. [Google Scholar] [CrossRef]
- Lee, J.J.; Livingston, S. Wide band bunny-ear radiating element. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Ann Arbor, MI, USA, 28 June–2 July 1993; pp. 1604–1607. [Google Scholar]
- Zhu, F.; Gao, S.; Ho, A.; Chan, H.; Alhameed, R.A.; Li, J.; Xu, J. Compact-size linearly tapered slot antenna for portable ultra-wideband imaging systems. Int. J. RF Microw. Comput. Aided Eng. 2013, 23, 290–299. [Google Scholar] [CrossRef]
- Li, X.-P.; Xu, G.; Duan, C.-J.; Ma, M.-R.; Shi, S.-E.; Li, W. Compact TSA with anti-spiral shape and lumped resistors for UWB applications. Micromachines 2021, 12, 1029. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Gao, S. Compact elliptically tapered slot antenna with nonuniform corrugations for ultra-wideband applications. Radioengineering 2013, 22, 276–280. [Google Scholar]
- Geng, D.; Yang, D.; Xiao, H.; Chen, Y.; Pan, J. A novel miniaturized Vivaldi antenna for ultra-wideband applications. Prog. Electromagn. Res. C 2017, 77, 123–131. [Google Scholar] [CrossRef]
- Bai, J.; Shi, S.; Prather, D.W. Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Trans. Microw. Theory Tech. 2011, 59, 1051–1057. [Google Scholar] [CrossRef]
- Ma, K.; Zhao, Z.; Wu, J.; Ellis, S.M.; Nie, Z.P. A printed Vivaldi antenna with improved radiation patterns by using two pairs of eye-shaped slots for UWB applications. Prog. Electromagn. Res. 2014, 148, 63–71. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, W.; Yang, S.; Li, W.; Li, P.; Yang, S. A novel miniaturized Vivaldi antenna using tapered slot edge with resonant cavity structure for ultrawideband applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1881–1884. [Google Scholar] [CrossRef]
- Yang, D.; Liu, S.; Geng, D. A miniaturized ultra-wideband Vivaldi antenna with low cross polarization. IEEE Access 2017, 5, 23352–23357. [Google Scholar] [CrossRef]
- de Oliveira, A.M.; Justo, J.F.; Perotoni, M.B.; Kofuji, S.T.; Neto, A.G.; Bueno, R.C.; Baudrand, H. A high directive Koch fractal Vivaldi antenna design for medical near-field microwave imaging applications. Microw. Opt. Technol. Lett. 2017, 59, 337–346. [Google Scholar] [CrossRef]
- Yeo, J. Compact, gain-enhanced, linearly tapered slot antenna with a combined director using a strip director and double-sided metamaterial loading for UWB applications. Prog. Electromagn. Res. C 2022, 127, 263–277. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Y.; Xie, W. A miniaturized wideband directional circularly polarized antenna based on bent Vivaldi antenna structure. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 298–302. [Google Scholar] [CrossRef]
- Hossain, A.; Pham, A.V. A novel gain-enhanced miniaturized and lightweight Vivaldi antenna. IEEE Trans. Antennas Propag. 2023, 71, 9431–9439. [Google Scholar] [CrossRef]
- Fei, P.; Jiao, Y.C.; Ding, Y.; Zhang, F.S. A compact coplanar waveguide fed wide tapered slot ultra-wideband antenna. Prog. Electromagn. Res. 2011, 25, 77–85. [Google Scholar] [CrossRef]
- Chareonsiri, Y.; Thaiwirot, W.; Akkaraekthalin, P. Design of ultra-wideband tapered slot antenna by using binomial impedance transformer. Frequenz 2017, 71, 251–260. [Google Scholar] [CrossRef]
- Liu, J.; Xu, C.; Yu, H.; Su, J. Design of a miniaturized ultrawideband and low scattering antipodal vivaldi antenna array. Sci. Rep. 2021, 11, 12499. [Google Scholar] [CrossRef]
- Pandey, G.; Verma, H.; Meshram, M. Compact antipodal Vivaldi antenna for UWB applications. Electron. Lett. 2015, 51, 308–310. [Google Scholar] [CrossRef]
- Saleh, S.; Ismail, W.; Abidin, I.S.Z.; Bataineh, M.H.; Alzoubi, A.S. Novel Compact UWB vivaldi non-uniform slot antenna with enhanced bandwidth. IEEE Trans. Antennas Propag. 2022, 70, 6592–6603. [Google Scholar] [CrossRef]
- Nassar, I.T.; Weller, T.M. A novel method for improving antipodal Vivaldi antenna performance. IEEE Trans. Antennas Propag. 2015, 63, 3321–3324. [Google Scholar] [CrossRef]
- Samsuzzaman, M.; Islam, M.T.; Shovon, A.A.S.; Faruque, R.I.; Misran, N. A 16-modified antipodal Vivaldi antenna array for microwave-based breast tumor imaging applications. Microw. Opt. Technol. Lett. 2019, 61, 2110–2118. [Google Scholar] [CrossRef]
- Li, Z.; Kang, X.; Su, J.; Guo, Q.; Yang, Y.; Wang, J. A wideband end-fire conformal Vivaldi antenna array mounted on a dielectric cone. Int. J. Antennas Propag. 2016, 2016, 9812642. [Google Scholar] [CrossRef]
- Gao, C.; Li, E.; Zhang, Y.; Guo, G. A directivity enhanced structure for the Vivaldi antenna using coupling patches. Microw. Opt. Technol. Lett. 2018, 60, 418–424. [Google Scholar] [CrossRef]
- Bourqui, J.; Okoniewski, M.; Fear, E.C. Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Trans. Antennas Propag. 2010, 58, 2318–2326. [Google Scholar] [CrossRef]
- Molaei, A.; Kaboli, M.; Abrishamian, M.S.; Mirtaheri, S.A. Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microw. Antennas Propag. 2014, 8, 1137–1142. [Google Scholar] [CrossRef]
- Moosazadeh, M.; Kharkovsky, S.; Case, J.T.; Samali, B. Miniaturized UWB antipodal Vivaldi antenna and its application for detection of void inside concrete specimens. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1317–1320. [Google Scholar] [CrossRef]
- Moosazadeh, M.; Kharkovsky, S. A compact high-gain and front-to-back ratio elliptically tapered antipodal Vivaldi antenna with trapezoid-shaped dielectric lens. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 552–555. [Google Scholar] [CrossRef]
- Amiri, M.; Tofigh, F.; Ghafoorzadeh-Yazdi, A.; Abolhasan, M. Exponential antipodal Vivaldi antenna with exponential dielectric lens. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1792–1795. [Google Scholar] [CrossRef]
- Huang, D.; Yang, H.; Wu, Y.; Zhao, F.; Liu, X. A high-gain antipodal Vivaldi antenna with multi-layer planar dielectric lens. J. Electromagn. Waves Appl. 2017, 32, 403–412. [Google Scholar] [CrossRef]
- Li, X.X.; Pang, D.W.; Wang, H.L.; Zhang, Y.M.; Lv, G.Q. Dielectric slabs covered broadband Vivaldi antenna for gain enhancement. Prog. Electromagn. Res. C 2017, 77, 69–80. [Google Scholar] [CrossRef]
- Zhou, B.; Cui, T.J. Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 326–329. [Google Scholar] [CrossRef]
- Pandey, G.K.; Singh, H.S.; Meshram, M.K. Meander-line-based inhomogeneous anisotropic artificial material for gain enhancement of UWB Vivaldi antenna. Appl. Phys. A 2016, 122, 134. [Google Scholar] [CrossRef]
- Boujemaa, M.A.; Herzi, R.; Choubani, F.; Gharsallah, A. UWB antipodal Vivaldi antenna with higher radiation performances using metamaterials. Appl. Phys. A 2018, 124, 714. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, H.; Wen, P.; Du, L.; Zhou, J. A miniaturized and high gain double-slot Vivaldi antenna using wideband index-near-zero metasurface. IEEE Access 2018, 6, 72015–72024. [Google Scholar] [CrossRef]
- Islam, M.T.; Samsuzzaman, M.; Kibria, S.; Misran, N.; Islam, M.T. Metasurface loaded, high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm. Sci. Rep. 2019, 9, 17317. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lei, Z.; Yang, R.; Fan, J.; Shi, X. A broadband artificial material for gain enhancement of antipodal tapered slot antenna. IEEE Trans. Antennas Propag. 2015, 63, 395–400. [Google Scholar] [CrossRef]
- Li, X.X.; Liu, G.; Zhang, Y.; Sang, L.; Lv, G. A compact multi-layer phase correcting lens to improve directive radiation of Vivaldi antenna. Int. J. RF Microw. Comput. Aided Eng. 2017, 27, e21109. [Google Scholar] [CrossRef]
- Li, X.; Zhou, H.; Gao, Z.; Wang, H.; Lv, G. Metamaterial slabs covered UWB antipodal Vivaldi antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2943–2946. [Google Scholar] [CrossRef]
- Lim, T.H.; Park, J.E.; Choo, H. Design of a Vivaldi-fed hybrid horn antenna for low-frequency gain enhancement. IEEE Trans. Antennas Propag. 2018, 66, 438–443. [Google Scholar] [CrossRef]
- Boas, E.C.V.; Ferrero, M.A.S.; Nasri, A.; Mittra, R.; Sodré, A.C. 31 dBi-gain slotted waveguide antenna array using wing-based reflectors. IEEE Access 2022, 10, 57327–57338. [Google Scholar] [CrossRef]
- Yeo, J.; Lee, J.-I. Gain enhancement of microstrip patch array antennas using two metallic plates for 24 GHz radar applications. Electronics 2023, 12, 1512. [Google Scholar] [CrossRef]
- Wang, Y.W.; Wang, G.M.; Zong, B.F. Directivity improvement of Vivaldi antenna using double-slot structure. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1380–1383. [Google Scholar] [CrossRef]
- Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010. [Google Scholar]
- Where Do You Find RFID Technology in Everyday Life? Available online: https://www.trace-id.com/where-do-you-find-rfidtechnology-in-everyday-life/ (accessed on 1 May 2024).
- Athauda, T.; Karmakar, N. Chipped versus chipless RF identification: A comprehensive review. IEEE Microw. Mag. 2019, 20, 47–57. [Google Scholar] [CrossRef]
- Herrojo, C.; Paredes, F.; Mata-Contreras, J.; Martín, F. Chipless-RFID: A review and recent developments. Sensors 2019, 19, 3385. [Google Scholar] [CrossRef] [PubMed]
- Yeo, J.; Lee, J.-I.; Kwon, Y. Humidity-sensing chipless RFID tag with enhanced sensitivity using an interdigital capacitor structure. Sensors 2021, 21, 6550. [Google Scholar] [CrossRef]
- Jha, A.K.; Akhter, Z.; Tiwari, N.; Muhammed Shafi, K.T.; Samant, H.; Jaleel Akhtar, M.; Cifra, M. Broadband wireless sensing system for non-invasive testing of biological samples. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 251–259. [Google Scholar] [CrossRef]
- Electromagnetic Simulation Solvers, CST Studio Suite. Available online: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/solvers/ (accessed on 1 May 2024).
Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|
W | 36 | wf2 | 1.1 |
L | 36 | rf | 2.4 |
ws1 | 5 | rg1 | 16 |
ws2 | 11.7 | rg2 | 8 |
loff1 | 2 | rg3 | 5 |
loff2 | 15 | rg4 | 2 |
loff3 | 5.6 | rs | 2 |
lf1 | 11.3 | c1 | 0.17 |
lf2 | 6.5 | r1 | 0.118 |
wf1 | 1.9 | h | 0.76 |
Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|
W | 36 | wf2 | 1.1 |
L | 36 | rf | 2.4 |
ws1 | 5 | rg1 | 16 |
ws2 | 11.7 | rg2 | 2 |
loff1 | 2 | rg3 | 1 |
loff2 | 15 | rg4 | 2 |
loff3 | 6.1 | rs | 2 |
lf1 | 11.3 | c1 | 0.23 |
lf2 | 7 | r1 | 0.118 |
wf1 | 1.9 | h | 0.76 |
References | Miniaturization Methods | Physical Dimensions (mm3) | Electrical Dimensions (λL3) | Bandwidth for VSWR < 2 (GHz) | Gain (dBi) |
---|---|---|---|---|---|
[13] | Triangular slot and corrugations | 35 × 36 × 0.8 | 0.362 × 0.372 × 0.008 | 3.1–10.6 (109.5%) | 2–8.5 |
[14] | Anti-spiral shape and lumped resistors | 63.5 × 53 × - | 0.254 × 0.212 × - | 1.2–9.8 (156.4%) | - |
[15] | Quarter circular slots and nonuniform corrugations | 37 × 34 × 0.8 | 0.382 × 0.351 × 0.008 | 3.1–10.6 (109.5%) | 1.5–8.1 |
[16] | Quarter circular slots and stepped structures | 36 × 30 × 1.0 | 0.282 × 0.235 × 0.008 | 2.35–11.0 (129.6%) | 3.0–7.8 |
[17] | Half circular slots | 44 × 62 × 0.254 | 0.66 × 0.93 × 0.004 | 4.5–50.0 (167.0%) | 3.0–12.0 |
[18] | Two pairs of eye-shaped slots | 36 × 36 × 0.8 | 0.36 × 0.36 × 0.008 | 3.0–12.8 (124.1%) | 3.7–8.3 |
[19] | Resonant cavities consisting of an eye-shaped slot and a circular slot | 150 × 258 × 0.8 | 0.25 × 0.43 × 0.001 | 0.5–6.0 (169.2%) | 0.8–8.0 |
[20] | Modified exponential slots | 36 × 32 × 2 | 0.3 × 0.267 × 0.017 | 2.5–11.0 (125.9%) | 3.5–8.0 |
[21] | Third generation of Koch fractal curves and circular slots | 36 × 60 × 0.64 | 0.584 × 0.974 × 0.01 | 4.87–11.0 (77.3%) | - |
[22] | Hook-shaped slots | 30 × 32 × 0.8 | 0.283 × 0.302 × 0.008 | 2.83–11.31 (119.9%) | 3.2–7.5 |
[23] | Bent Vivaldi elements | 48 × 48 × 22.5 | 0.256 × 0.256 × 0.12 | 1.6–2.9 (57.8%) | 1.7–5.7 (dBic) |
[24] | Four cascaded circular cavity structures based on several circular holes in tandem with different curvatures | 195 × 244.2 × 1.57 | 0.295 × 0.366 × 0.0024 | 0.45–10 (182.8%) | −1–10.8 |
[25] | Corrugations using three pairs of trapezoidal slots | 35 × 30 × 1 | 0.35 × 0.3 × 0.01 | 3.0–11.4 (116.7%) | 3.0–7.4 |
[26] | 42 pairs of rectangular corrugations | 50 × 100 × 0.8 | 0.487 × 0.973 × 0.008 | 2.92–11.91 (121.2%) | 3.9–10.5 |
[27] | 6 pairs of corrugations using slanted elliptical rectangular slots | 30 × 40 × 0.51 | 0.45 × 0.6 × 0.008 | 4.5–50 (167.0%) | 3.0–10.0 |
[28] | Sinusoidal modulated Gaussian tapered slot | 50 × 56 × 0.8 | 0.333 × 0.373 × 0.005 | 2.0–12.0 (142.9%) | 1.5–5.2 |
[29] | Nonuniform tapered slot using a truncated Fourier series with cosine functions | 30 × 20.3 × 0.8 | 0.288 × 0.196 × 0.008 | 2.9–13.55 (129.5%) | 1.8–6.9 |
This Work | Fan-shaped and stepped structures | 36 × 36 × 0.76 | 0.278 × 0.278 × 0.006 | 2.320–13.745 (142.2%) | 3.1–7.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, J.; Lee, J.-I. Compact Wideband Tapered Slot Antenna Using Fan-Shaped and Stepped Structures for Chipless Radio-Frequency-Identification Sensor Tag Applications. Sensors 2024, 24, 3835. https://doi.org/10.3390/s24123835
Yeo J, Lee J-I. Compact Wideband Tapered Slot Antenna Using Fan-Shaped and Stepped Structures for Chipless Radio-Frequency-Identification Sensor Tag Applications. Sensors. 2024; 24(12):3835. https://doi.org/10.3390/s24123835
Chicago/Turabian StyleYeo, Junho, and Jong-Ig Lee. 2024. "Compact Wideband Tapered Slot Antenna Using Fan-Shaped and Stepped Structures for Chipless Radio-Frequency-Identification Sensor Tag Applications" Sensors 24, no. 12: 3835. https://doi.org/10.3390/s24123835
APA StyleYeo, J., & Lee, J.-I. (2024). Compact Wideband Tapered Slot Antenna Using Fan-Shaped and Stepped Structures for Chipless Radio-Frequency-Identification Sensor Tag Applications. Sensors, 24(12), 3835. https://doi.org/10.3390/s24123835