Non-Contact Paper Thickness and Quality Monitoring Based on Mid-Infrared Optical Coherence Tomography and THz Time Domain Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mid-Infrared Optical Coherence Tomography
2.2. THz Time-Domain Spectroscopy
2.3. Paper Samples and Measurements
2.4. OCT Thickness Measurements
2.5. THz TDS Thickness Measurements
3. Results
3.1. OCT Paper Thickness Measurements
3.2. THz TDS Paper Thickness Measurements
3.3. Surface Quality and Defect Detection
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waller, M.H. On-line papermaking sensors: An historical perspective. In Proceedings of the 12th Fundamental Research Symposium, Oxford, UK, 17–21 September 2001; pp. 785–895. [Google Scholar]
- Busch, S.F.; Probst, T.; Duschek, L.; Wilk, R.; Voitsch, M.; Fender, F.; Lubbecke, S.; Gartner, G.; Wallace, V.P.; Koch, M. Inline monitoring of paper thickness in an industrial setting. In Proceedings of the 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Mainz, Germany, 1–6 September 2013; pp. 1–2. [Google Scholar]
- Xiao, Z. Papermaking Process Online Measurement and Control of Paper Ash Content. Sens. Transducers 2014, 174, 229–234. [Google Scholar]
- Graeffe, J.; Nuyan, S. An Online Laser Caliper Measurement for the Paper Industry, Proceedings of the Optical Measurement Systems for Industrial Inspection IV, Munich, Germany, 13–17 June 2005; Osten, W., Gorecki, C., Novak, E.L., Eds.; SPIE: Bellingham, WA, USA, 2005; pp. 318–326. [Google Scholar]
- Petersen, C.R.; Rajagopalan, N.; Markos, C.; Israelsen, N.M.; Rodrigo, P.J.; Woyessa, G.; Tidemand-Lichtenberg, P.; Pedersen, C.; Weinell, C.E.; Kiil, S.; et al. Non-Destructive Subsurface Inspection of Marine and Protective Coatings Using Near- and Mid-Infrared Optical Coherence Tomography. Coatings 2021, 11, 877. [Google Scholar] [CrossRef]
- Israelsen, N.M.; Petersen, C.R.; Barh, A.; Jain, D.; Jensen, M.; Hannesschläger, G.; Tidemand-Lichtenberg, P.; Pedersen, C.; Podoleanu, A.; Bang, O. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl. 2019, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Prykäri, T.; Czajkowski, J.; Alarousu, E.; Myllylä, R. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry. Opt. Rev. 2010, 17, 218–222. [Google Scholar] [CrossRef]
- Alarousu, E.; Krehut, L.; Prykäri, T.; Myllylä, R. Study on the use of optical coherence tomography in measurements of paper properties. Meas. Sci. Technol. 2005, 16, 1131–1137. [Google Scholar] [CrossRef]
- Mousavi, P.; Haran, F.; Jez, D.; Santosa, F.; Dodge, J.S. Simultaneous composition and thickness measurement of paper using terahertz time-domain spectroscopy. Appl. Opt. 2009, 48, 6541–6546. [Google Scholar] [CrossRef] [Green Version]
- Hattori, T.; Kumon, H.; Tamazumi, H. Terahertz spectroscopic characterization of paper. In Proceedings of the 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, Italy, 5–10 September 2010; pp. 1–2. [Google Scholar]
- Friis, S.M.M.; Høgstedt, L. Upconversion-based mid-infrared spectrometer using intra-cavity LiNbO3 crystals with chirped poling structure. Opt. Lett. 2019, 44, 4231–4234. [Google Scholar] [CrossRef] [PubMed]
- Barh, A.; Rodrigo, P.J.; Meng, L.; Pedersen, C.; Tidemand-Lichtenberg, P. Parametric upconversion imaging and its applications. Adv. Opt. Photonics 2019, 11, 952–1018. [Google Scholar] [CrossRef]
- Israelsen, N.M.; Rodrigo, P.J.; Petersen, C.R.; Woyessa, G.; Hansen, R.E.; Tidemand-Lichtenberg, P.; Pedersen, C.; Bang, O. High-resolution mid-infrared optical coherence tomography with kHz line rate. Opt. Lett. 2021, 46, 4558–4561. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, O.; Tonouchi, M.; Hangyo, M. A cross-correlation spectroscopy in subterahertz region using an incoherent light source. Appl. Phys. Lett. 2000, 76, 1519–1521. [Google Scholar] [CrossRef]
- Scheller, M.; Koch, M. Terahertz quasi time domain spectroscopy. Opt. Express 2009, 17, 17723–17733. [Google Scholar] [CrossRef] [PubMed]
- Scheller, M.; Dürrschmidt, S.F.; Stecher, M.; Koch, M. Terahertz quasi-time-domain spectroscopy imaging. Appl. Opt. 2011, 50, 1884–1888. [Google Scholar] [CrossRef] [PubMed]
- Kohlhaas, R.B.; Rehn, A.; Nellen, S.; Koch, M.; Schell, M.; Dietz, R.J.B.; Balzer, J.C. Terahertz quasi time-domain spectroscopy based on telecom technology for 1550 nm. Opt. Express 2017, 25, 12851–12859. [Google Scholar] [CrossRef]
- Göbel, T.; Stanze, D.; Globisch, B.; Dietz, R.J.B.; Roehle, H.; Schell, M. Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 35 terahertz bandwidth. Opt. Lett. 2013, 38, 4197–4199. [Google Scholar] [CrossRef] [PubMed]
- Graeffe, J. Calibration Method for Accurate Optical Measurement of Thickness Profile for the Paper Industry, Proceedings of the Optical Measurement Systems for Industrial Inspection VI, Munich, Germany, 14–18 June 2009; Lehmann, P.H., Ed.; SPIE: Bellingham, WA, USA, 2009; p. 738920. [Google Scholar]
- Reid, M.; Fedosejevs, R. Terahertz birefringence and attenuation properties of wood and paper. Appl. Opt. 2006, 45, 2766–2772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woyessa, G.; Kwarkye, K.; Dasa, M.K.; Petersen, C.R.; Sidharthan, R.; Chen, S.; Yoo, S.; Bang, O. Power sTable 1.5–10.5 µm cascaded mid-infrared supercontinuum laser without thulium amplifier. Opt. Lett. 2021, 46, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.A.; Plant, G.; Guo, K.; Janiszewski, B.; Freeman, M.J.; Maynard, R.L.; Islam, M.N.; Terry, F.L.; Alvarez, O.; Chenard, F.; et al. Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers. Opt. Lett. 2018, 43, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, A.J.; Tie, X.; Hackmann, M.J.; Cense, B.; Gibson, A.P.; Wallace, V.P. Co-registered combined OCT and THz imaging to extract depth and refractive index of a tissue-equivalent test object. Biomed. Opt. Express 2020, 11, 1417–1431. [Google Scholar] [CrossRef] [PubMed]
Paper Thickness [μm] | |||||||
---|---|---|---|---|---|---|---|
Reference | 68 | 72 | 83 | 90 | 164 | 256 | 443 |
Digital caliper | 69.3 ± 1.8 | 72.5 ± 1.1 | 85.2 ± 1.2 | 93.8 ± 1.0 | 164.2 ± 2.7 | 255.5 ± 5.5 | 416.0 ± 14.7 |
OCT Method 1 | 69.6 a ± 3.2 | 77.4 ± 2.8 | 117.3 ± 3.3 | 105.7 ± 4.3 | -- | -- | -- |
OCT Method 2 | 52.4 a ± 5.6 | 70.5 ± 3.7 | 80.0 ± 7.4 | 97.9 ± 6.1 | -- | -- | -- |
THz-DTU | 148.7 ± 11.0 | -- | 186.0 ± 5.3 | -- | 298.3 ± 5.0 | 372.0 ± 3.5 | 442.3 ± 9.5 |
THz-TOP | 88 ± 4 b | -- | 117 ± 4 b | -- | 189 ± 4 b | 322 ± 4 b | 439 ± 4 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansen, R.E.; Bæk, T.; Lange, S.L.; Israelsen, N.M.; Mäntylä, M.; Bang, O.; Petersen, C.R. Non-Contact Paper Thickness and Quality Monitoring Based on Mid-Infrared Optical Coherence Tomography and THz Time Domain Spectroscopy. Sensors 2022, 22, 1549. https://doi.org/10.3390/s22041549
Hansen RE, Bæk T, Lange SL, Israelsen NM, Mäntylä M, Bang O, Petersen CR. Non-Contact Paper Thickness and Quality Monitoring Based on Mid-Infrared Optical Coherence Tomography and THz Time Domain Spectroscopy. Sensors. 2022; 22(4):1549. https://doi.org/10.3390/s22041549
Chicago/Turabian StyleHansen, Rasmus Eilkær, Thorsten Bæk, Simon Lehnskov Lange, Niels Møller Israelsen, Markku Mäntylä, Ole Bang, and Christian Rosenberg Petersen. 2022. "Non-Contact Paper Thickness and Quality Monitoring Based on Mid-Infrared Optical Coherence Tomography and THz Time Domain Spectroscopy" Sensors 22, no. 4: 1549. https://doi.org/10.3390/s22041549
APA StyleHansen, R. E., Bæk, T., Lange, S. L., Israelsen, N. M., Mäntylä, M., Bang, O., & Petersen, C. R. (2022). Non-Contact Paper Thickness and Quality Monitoring Based on Mid-Infrared Optical Coherence Tomography and THz Time Domain Spectroscopy. Sensors, 22(4), 1549. https://doi.org/10.3390/s22041549