Identifying Biomarkers for Accurate Detection of Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
- Baseline: A neutral state was induced as subjects sat or stood at a table and read neutral material.
- Stress: A highly strenuous state was induced in which subjects were exposed to both parts of the Trier Social Stress Test:
- ○
- Mental stress: a mental arithmetic task.
- ○
- Social stress: a public speaking task.
- Amusement: An amusing state was induced as subjects were shown funny video clips.
- Meditation: A de-excited state was induced as subjects were guided through meditation exercises.
2.2. Preprocessing and Analysis
2.3. Classification
- (a)
- 2-way: stress vs. amusement;
- (b)
- 3-way: stress vs. amusement vs. meditation;
- (c)
- 4-way: stress vs. amusement vs. meditation vs. baseline.
- (a)
- 3-way: baseline vs. meditation before stress vs. meditation after stress;
- (b)
- 3-way: baseline vs. social stress vs. mental stress;
- (c)
- 6-way: baseline vs. social stress vs. mental stress vs. amusement vs. meditation before stress vs. meditation after stress.
- (a)
- logistic regression;
- (b)
- decision trees;
- (c)
- XGBoost (gradient-boosted decision trees).
- (a)
- 3-way: baseline vs. meditation before stress vs. meditation after stress.
- (b)
- 3-way: baseline vs. social stress vs. mental stress
- (c)
- 6—way: baseline vs. social stress vs. mental stress vs. amusement vs. meditation before stress vs. meditation after stress
3. Results
4. Discussion
4.1. Optimal Biomarkers for Detection of Stress
4.2. Significance and Rationale for Detection of Stress in SUD and Other Disorders
4.3. Limitations and Future Directions
4.4. Towards Development of a Wearable Device for Detection and Management of Stress in SUD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Survey on Drug Use and Health. Key Substance Use and Mental Health Indicators in the United States: Results from the 2020 National Survey on Drug Use and Health; HHS Publ. No. PEP19-5068, NSDUH Ser. H-54; Administration Center for Behavioral Health Statistics and Quality: Rockville, MD, USA, 2021; Volume 170, pp. 1–62. [Google Scholar]
- Drug Abuse Statistics: Exploring Research, Stats and Trends. Available online: https://drugabuse.com/statistics-data/ (accessed on 10 October 2022).
- Treating Unhoused People with Addiction During COVID-19. Available online: https://www.asam.org/Quality-Science/covid-19-coronavirus/treating-unhoused-people-with-addiction-during-covid-19 (accessed on 10 October 2022).
- National Institute on Drug Abuse (NIDA). About NIDA. Available online: https://www.drugabuse.gov/about-nida (accessed on 10 October 2022).
- King, S.L.; Hegadoren, K.M. Stress Hormones: How Do They Measure Up? Biol. Res. Nurs. 2002, 4, 92–103. [Google Scholar] [CrossRef] [PubMed]
- FDA Permits Marketing of Mobile Medical Application for Substance Use Disorder. Brown Univ. Child Adolesc. Psychopharmacol. Update 2017, 19, 8. [CrossRef]
- Gustafson, D.H.; McTavish, F.M.; Chih, M.Y.; Atwood, A.K.; Johnson, R.A.; Boyle, M.G.; Levy, M.S.; Driscoll, H.; Chisholm, S.M.; Dillenburg, L.; et al. A Smartphone Application to Support Recovery from Alcoholism a Randomized Clinical Trial. JAMA Psychiatry 2014, 71, 566–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldfine, C.; Lai, J.T.; Lucey, E.; Newcomb, M.; Carreiro, S. Wearable and Wireless MHealth Technologies for Substance Use Disorder. Curr. Addict. Rep. 2020, 7, 291–300. [Google Scholar] [CrossRef] [PubMed]
- McHugh, R.K.; Hearon, B.A.; Otto, M.W. Cognitive Behavioral Therapy for Substance Use Disorders. Psychiatr. Clin. N. Am. 2010, 33, 511–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreiro, S.; Smelson, D.; Ranney, M.; Horvath, K.J.; Picard, R.W.; Boudreaux, E.D.; Hayes, R.; Boyer, E.W. Real-Time Mobile Detection of Drug Use with Wearable Biosensors: A Pilot Study. J. Med. Toxicol. 2015, 11, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreiro, S.; Fang, H.; Zhang, J.; Wittbold, K.; Weng, S.; Mullins, R.; Smelson, D.; Boyer, E.W. IMStrong: Deployment of a Biosensor System to Detect Cocaine Use. J. Med. Syst. 2015, 39, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmud, M.S.; Fang, H.; Wang, H.; Carreiro, S.; Boyer, E. Automatic Detection of Opioid Intake Using Wearable Biosensor. In Proceedings of the 2018 International Conference on Computing, Networking and Communications, ICNC 2018, Maui, HI, USA, 19 June 2018; Volume 2018, pp. 784–788. [Google Scholar]
- Roy, S.K.; Ralekar, C.; Gandhi, T.K. Emotion Classification from EEG Signals. In Proceedings of the 10th INDIACom, 2016 3rd International Conference on Computing for Sustainable Global Development, INDIACom 2016, New Delhi, India, 16–18 March 2016. [Google Scholar]
- Ahn, J.W.; Ku, Y.; Kim, H.C. A Novel Wearable EEG and ECG Recording System for Stress Assessment. Sensors 2019, 19, 1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, G.; Smitha, K.G. EEG Based Stress Level Identification. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016, Budapest, Hungary, 9–12 October 2016. [Google Scholar]
- Tawakol, A.; Ishai, A.; Takx, R.A.; Figueroa, A.L.; Ali, A.; Kaiser, Y.; Truong, Q.A.; Solomon, C.J.; Calcagno, C.; Mani, V.; et al. Relation between Resting Amygdalar Activity and Cardiovascular Events: A Longitudinal and Cohort Study. Lancet 2017, 389, 834–845. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Huang, J.; An, Y.; Xu, W. The Relationship between Stress and Negative Emotion: The Mediating Role of Rumination. Clin. Res. Trials 2018, 4, 1–5. [Google Scholar] [CrossRef]
- Schmidt, P.; Reiss, A.; Duerichen, R.; Van Laerhoven, K. Introducing WeSAD, a Multimodal Dataset for Wearable Stress and Affect Detection. In Proceedings of the ICMI 2018—2018 International Conference on Multimodal Interaction, Boulder, CO, USA, 16–20 October 2018; pp. 400–408. [Google Scholar] [CrossRef]
- Jambhale, K.; Rieland, B.; Mahajan, S.; Narsay, P.; Banerjee, N.; Dutt, A.; Vinjamuri, R. Selection of Optimal Physiological Features for Accurate Detection of Stress. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; pp. 2514–2517. [Google Scholar] [CrossRef]
- Iqbal, T.; Redon-Lurbe, P.; Simpkin, A.J.; Elahi, A.; Ganly, S.; Wijns, W.; Shahzad, A. A Sensitivity Analysis of Biophysiological Responses of Stress for Wearable Sensors in Connected Health. IEEE Access 2021, 9, 93567–93579. [Google Scholar] [CrossRef]
- Elzeiny, S.; Qaraqe, M. Automatic and Intelligent Stressor Identification Based on Photoplethysmography Analysis. IEEE Access 2021, 9, 68498–68510. [Google Scholar] [CrossRef]
- Hssayeni, M.D.; Ghoraani, B. Multi-Modal Physiological Data Fusion for Affect Estimation Using Deep Learning. IEEE Access 2021, 9, 21642–21652. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Panahi, Y.; Sahraei, H.; Johnston, T.P.; Sahebkar, A. The Impact of Stress on Body Function: A Review. EXCLI J. 2017, 16, 1057. [Google Scholar] [CrossRef] [PubMed]
- Mccauley, J.L.; Killeen, T.; Gros, D.F.; Brady, K.T.; Back, S.E. Posttraumatic Stress Disorder and Co-Occurring Substance Use Disorders: Advances in Assessment and Treatment. Clin. Psychol. 2012, 19, 283–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lijffijt, M.; Hu, K.; Swann, A.C. Stress Modulates Illness-Course of Substance Use Disorders: A Translational Review. Front. Psychiatry 2014, 5, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R. Chronic Stress, Drug Use, and Vulnerability to Addiction. Ann. N. Y. Acad. Sci. 2008, 1141, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goeders, N.E. The Impact of Stress on Addiction. Eur. Neuropsychopharmacol. 2003, 13, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Mental Health and Substance Use Disorders SAMHSA. Available online: https://www.samhsa.gov/ (accessed on 10 October 2022).
ECG | EDA | EMG | Resp | Temp | X | Y | Z | |
---|---|---|---|---|---|---|---|---|
S2 | 2 | 5 | 1 | 3 | 6 | 0 | 4 | 6 |
S3 | 2 | 5 | 3 | 1 | 6 | 0 | 4 | 6 |
S4 | 2 | 4 | 3 | 1 | 6 | 0 | 5 | 6 |
S5 | 2 | 6 | 3 | 1 | 4 | 0 | 5 | 6 |
S6 | 2 | 6 | 1 | 3 | 4 | 0 | 5 | 6 |
S7 | 1 | 5 | 2 | 3 | 6 | 0 | 4 | 6 |
S8 | 1 | 5 | 3 | 2 | 4 | 0 | 6 | 6 |
S9 | 2 | 6 | 1 | 3 | 5 | 0 | 4 | 6 |
S10 | 2 | 6 | 1 | 3 | 4 | 0 | 5 | 6 |
S11 | 0 | 4 | 1 | 3 | 5 | 2 | 6 | 6 |
S13 | 1 | 6 | 3 | 2 | 4 | 0 | 5 | 6 |
S14 | 2 | 4 | 1 | 3 | 5 | 0 | 6 | 6 |
S15 | 2 | 6 | 1 | 3 | 0 | 4 | 5 | 5 |
S16 | 1 | 6 | 2 | 3 | 4 | 0 | 5 | 6 |
S17 | 3 | 6 | 4 | 2 | 5 | 0 | 4 | 6 |
AUC-ROC | ACC | Top 3 Features | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ECG | EDA | EMG | Resp | Temp | X | Y | Z | ||||
S2 | 2-way | 1 | 1 | X | X | X | |||||
3-way | 1 | 0.999 | X | X | X | ||||||
4-way | 0.999 | 0.997 | X | X | X | ||||||
S3 | 2-way | 0.89 | 0.82 | X | X | X | |||||
3-way | 0.945 | 0.949 | X | X | X | ||||||
4-way | 0.965 | 0.886 | X | X | X | ||||||
S4 | 2-way | 1 | 1 | X | X | X | |||||
3-way | 0.999 | 0.996 | X | X | X | ||||||
4-way | 0.999 | 0.994 | X | X | X | ||||||
S5 | 2-way | 1 | 1 | X | X | ||||||
3-way | 0.999 | 0.996 | X | X | X | ||||||
4-way | 0.999 | 0.994 | X | X | X | X | |||||
S6 | 2-way | 0.997 | 1 | X | X | X | |||||
3-way | 0.982 | 0.996 | X | X | |||||||
4-way | 0.948 | 0.994 | X | X | X | ||||||
S7 | 2-way | 1 | 1 | X | X | X | X | ||||
3-way | 0.999 | 0.995 | X | X | X | ||||||
4-way | 0.947 | 0.803 | X | X | |||||||
S8 | 2-way | 0.999 | 0.998 | X | X | ||||||
3-way | 0.999 | 0.996 | X | X | X | ||||||
4-way | 0.999 | 0.999 | X | X | X | ||||||
S9 | 2-way | 0.993 | 0.982 | X | X | X | |||||
3-way | 0.995 | 0.981 | X | X | X | X | |||||
4-way | 0.982 | 0.971 | X | X | X | ||||||
S10 | 2-way | 1 | 1 | X | X | X | |||||
3-way | 0.999 | 0.999 | X | X | |||||||
4-way | 0.999 | 0.997 | X | X | X | ||||||
S11 | 2-way | 1 | 1 | X | X | X | X | ||||
3-way | 0.997 | 0.971 | X | X | |||||||
4-way | 0.988 | 0.929 | X | X | X | ||||||
S13 | 2-way | 1 | 1 | X | X | X | X | ||||
3-way | 0.998 | 0.981 | X | X | X | ||||||
4-way | 0.998 | 0.981 | X | X | X | ||||||
S14 | 2-way | 0.919 | 0.903 | X | X | X | |||||
3-way | 0.873 | 0.819 | X | X | |||||||
4-way | 0.932 | 0.886 | X | X | X | X | |||||
S15 | 2-way | 1 | 1 | X | X | ||||||
3-way | 0.999 | 0.998 | X | X | X | X | |||||
4-way | 0.998 | 0.992 | X | X | X | ||||||
S16 | 2-way | 1 | 1 | X | X | X | |||||
3-way | 0.999 | 0.998 | X | X | X | ||||||
4-way | 0.999 | 0.998 | X | X | X | ||||||
S17 | 2-way | 1 | 1 | X | X | X | |||||
3-way | 0.999 | 0.995 | X | X | X | ||||||
4-way | 0.999 | 0.997 | X | X | X |
Accuracy | AUC | ||||||
---|---|---|---|---|---|---|---|
Logistic Regression | Decision Trees | XG-Boost | Logistic Regression | Decision Trees | XG-Boost | ||
S2 | Med 1 vs. Med 2 | 0.999 | 1.0 | 0.999 | 0.999 | 1.0 | 0.999 |
Social vs. mental stress | 0.967 | 0.988 | 0.933 | 0.991 | 0.998 | 0.999 | |
6-way | 0.972 | 0.993 | 0.999 | 0.996 | 0.999 | 0.999 | |
S3 | Med 1 vs. Med 2 | 0.986 | 0.999 | 0.999 | 0.998 | 0.999 | 0.998 |
Social vs. mental stress | 0.937 | 0.996 | 0.999 | 0.950 | 0.999 | 0.999 | |
6-way | 0.628 | 0.983 | 0.998 | 0.842 | 0.998 | 0.999 | |
S4 | Med 1 vs. Med 2 | 0.999 | 1.0 | 1.0 | 0.999 | 0.999 | 0.999 |
Social vs. mental stress | 0.989 | 0.993 | 0.995 | 0.999 | 0.999 | 0.999 | |
6-way | 0.984 | 0.993 | 0.996 | 0.997 | 0.999 | 0.999 | |
S5 | Med 1 vs. Med 2 | 0.980 | 0.999 | 0.997 | 0.997 | 0.997 | 0.997 |
Social vs. mental stress | 0.928 | 0.979 | 0.988 | 0.957 | 0.990 | 0.997 | |
6-way | 0.743 | 0.983 | 0.990 | 0.939 | 0.996 | 0.999 | |
S6 | Med 1 vs. Med 2 | 0.884 | 1.0 | 0.999 | 0.963 | 1.0 | 0.999 |
Social vs. mental stress | 0.979 | 0.995 | 0.999 | 0.957 | 0.990 | 0.997 | |
6-way | 0.642 | 0.986 | 0.995 | 0.923 | 0.998 | 0.999 | |
S7 | Med 1 vs. Med 2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
Social vs. mental stress | 0.995 | 0.997 | 0.998 | 0.999 | 0.999 | 0.999 | |
6-way | 0.918 | 0.998 | 0.998 | 0.992 | 0.999 | 0.999 | |
S8 | Med 1 vs. Med 2 | 0.999 | 1.0 | 0.999 | 1.0 | 1.0 | 1.0 |
Social vs. mental stress | 0.912 | 0.973 | 0.983 | 0.955 | 0.994 | 0.998 | |
6-way | 0.943 | 0.9821 | 0.989 | 0.99 | 0.998 | 0.999 | |
S9 | Med 1 vs. Med 2 | 1.0 | 1.0 | 0.999 | 1.0 | 1.0 | 0.999 |
Social vs. mental stress | 0.982 | 0.992 | 0.994 | 0.998 | 0.999 | 0.999 | |
6-way | 0.973 | 0.989 | 0.995 | 0.996 | 0.999 | 0.999 | |
S10 | Med 1 vs. Med 2 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Social vs. mental stress | 0.888 | 0.971 | 0.979 | 0.928 | 0.991 | 0.997 | |
6-way | 0.875 | 0.999 | 0.999 | 0.951 | 0.999 | 0.999 | |
S11 | Med 1 vs. Med 2 | 0.875 | 0.999 | 0.999 | 0.951 | 0.999 | 0.999 |
Social vs. mental stress | 0.947 | 0.988 | 0.988 | 0.993 | 0.999 | 0.999 | |
6-way | 0.858 | 0.977 | 0.985 | 0.981 | 0.999 | 0.999 | |
S13 | Med 1 vs. Med 2 | 0.999 | 1.0 | 0.999 | 0.999 | 0.999 | 0.999 |
Social vs. mental stress | 0.864 | 0.983 | 0.994 | 0.888 | 0.995 | 0.999 | |
6-way | 0.907 | 0.984 | 0.994 | 0.966 | 0.997 | 0.999 | |
S14 | Med 1 vs. Med 2 | 0.971 | 0.999 | 0.999 | 0.995 | 0.999 | 0.999 |
Social vs. mental stress | 0.963 | 0.992 | 0.995 | 0.972 | 0.999 | 0.999 | |
6-way | 0.841 | 0.967 | 0.981 | 0.973 | 0.992 | 0.999 | |
S15 | Med 1 vs. Med 2 | 1.0 | 1.0 | 0.999 | 1.0 | 1.0 | 1.0 |
Social vs. mental stress | 0.991 | 0.998 | 0.998 | 0.997 | 0.999 | 0.999 | |
6-way | 0.991 | 0.997 | 0.999 | 0.999 | 0.999 | 0.999 | |
S16 | Med 1 vs. Med 2 | 0.923 | 0.997 | 0.999 | 0.963 | 0.999 | 0.999 |
Social vs. mental stress | 0.992 | 0.993 | 0.994 | 0.999 | 0.999 | 0.999 | |
6-way | 0.934 | 0.989 | 0.994 | 0.989 | 0.999 | 0.999 | |
S17 | Med 1 vs. Med 2 | 1.0 | 1.0 | 0.999 | 1.0 | 1.0 | 1.0 |
Social vs. mental stress | 0.947 | 0.982 | 0.989 | 0.994 | 0.997 | 0.999 | |
6-way | 0.956 | 0.980 | 0.993 | 0.994 | 0.997 | 0.999 |
Accuracy | AUC | ||||||
---|---|---|---|---|---|---|---|
Logistic Regression | Decision Trees | XG-Boost | Logistic Regression | Decision Trees | XG-Boost | ||
S2 | Med 1 vs. Med 2 | 0.999 | 1.0 | 0.999 | 0.999 | 1.0 | 0.999 |
Social vs. mental stress | 0.966 | 0.988 | 0.988 | 0.991 | 0.998 | 0.991 | |
6-way | 0.979 | 0.992 | 0.993 | 0.998 | 0.999 | 0.998 | |
S3 | Med 1 vs. Med 2 | 0.997 | 0.999 | 0.998 | 0.999 | 0.999 | 0.999 |
Social vs. mental stress | 0.936 | 0.996 | 0.998 | 0.974 | 0.999 | 0.974 | |
6-way | 0.720 | 0.983 | 0.993 | 0.912 | 0.998 | 0.912 | |
S4 | Med 1 vs. Med 2 | 0.999 | 1.0 | 1.0 | 0.999 | 0.999 | 0.999 |
Social vs. mental stress | 0.990 | 0.991 | 0.991 | 0.997 | 0.997 | 0.997 | |
6-way | 0.964 | 0.988 | 0.985 | 0.993 | 0.999 | 0.993 | |
S5 | Med 1 vs. Med 2 | 0.988 | 0.999 | 0.997 | 0.998 | 0.998 | 0.998 |
Social vs. mental stress | 0.967 | 0.974 | 0.972 | 0.988 | 0.991 | 0.988 | |
6-way | 0.24 | 0.959 | 0.971 | 0.973 | 0.993 | 0.973 | |
S6 | Med 1 vs. Med 2 | 0.995 | 1.0 | 0.998 | 0.999 | 1.0 | 0.999 |
Social vs. mental stress | 0.978 | 0.995 | 0.996 | 0.996 | 0.999 | 0.996 | |
6-way | 0.629 | 0.979 | 0.977 | 0.941 | 0.998 | 0.941 | |
S7 | Med 1 vs. Med 2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
Social vs. mental stress | 0.996 | 0.997 | 0.997 | 0.999 | 0.999 | 0.999 | |
6-way | 0.946 | 0.998 | 0.997 | 0.995 | 0.999 | 0.995 | |
S8 | Med 1 vs. Med 2 | 0.999 | 1.0 | 0.999 | 0.999 | 0.999 | 0.999 |
Social vs. mental stress | 0.920 | 0.975 | 0.973 | 0.971 | 0.993 | 0.971 | |
6-way | 0.922 | 0.982 | 0.979 | 0.977 | 0.998 | 0.977 | |
S9 | Med 1 vs. Med 2 | 0.999 | 1.0 | 0.999 | 1.0 | 1.0 | 1.0 |
Social vs. mental stress | 0.983 | 0.991 | 0.988 | 0.998 | 0.999 | 0.998 | |
6-way | 0.975 | 0.989 | 0.991 | 0.996 | 0.999 | 0.996 | |
S10 | Med 1 vs. Med 2 | 1.0 | 1.0 | 0.999 | 1.0 | 1.0 | 1.0 |
Social vs. mental stress | 0.944 | 0.970 | 0.968 | 0.983 | 0.991 | 0.983 | |
6-way | 0.910 | 0.961 | 0.965 | 0.979 | 0.995 | 0.979 | |
S11 | Med 1 vs. Med 2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
Social vs. mental stress | 0.989 | 0.989 | 0.985 | 0.998 | 0.999 | 0.998 | |
6-way | 0.831 | 0.977 | 0.982 | 0.968 | 0.998 | 0.968 | |
S13 | Med 1 vs. Med 2 | 1.0 | 1.0 | 0.999 | 1.0 | 1.0 | 1.0 |
Social vs. mental stress | 0.864 | 0.970 | 0.973 | 0.903 | 0.992 | 0.903 | |
6-way | 0.909 | 0.978 | 0.977 | 0.976 | 0.996 | 0.976 | |
S14 | Med 1 vs. Med 2 | 0.971 | 0.999 | 0.999 | 0.995 | 0.999 | 0.999 |
Social vs. mental stress | 0.963 | 0.992 | 0.995 | 0.972 | 0.999 | 0.999 | |
6-way | 0.841 | 0.967 | 0.981 | 0.973 | 0.992 | 0.999 | |
S15 | Med 1 vs. Med 2 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Social vs. mental stress | 0.993 | 0.998 | 0.995 | 0.997 | 0.999 | 0.997 | |
6-way | 0.993 | 0.995 | 0.995 | 0.999 | 0.999 | 0.999 | |
S16 | Med 1 vs. Med 2 | 0.994 | 0.996 | 0.994 | 0.999 | 0.999 | 0.999 |
Social vs. mental stress | 0.991 | 0.993 | 0.993 | 0.999 | 0.999 | 0.999 | |
6-way | 0.926 | 0.988 | 0.987 | 0.987 | 0.999 | 0.987 | |
S17 | Med 1 vs. Med 2 | 1.0 | 1.0 | 0.999 | 1.0 | 1.0 | 1.0 |
Social vs. mental stress | 0.941 | 0.982 | 0.981 | 0.973 | 0.995 | 0.973 | |
6-way | 0.995 | 0.979 | 0.985 | 0.994 | 0.997 | 0.994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jambhale, K.; Mahajan, S.; Rieland, B.; Banerjee, N.; Dutt, A.; Kadiyala, S.P.; Vinjamuri, R. Identifying Biomarkers for Accurate Detection of Stress. Sensors 2022, 22, 8703. https://doi.org/10.3390/s22228703
Jambhale K, Mahajan S, Rieland B, Banerjee N, Dutt A, Kadiyala SP, Vinjamuri R. Identifying Biomarkers for Accurate Detection of Stress. Sensors. 2022; 22(22):8703. https://doi.org/10.3390/s22228703
Chicago/Turabian StyleJambhale, Kiran, Smridhi Mahajan, Benjamin Rieland, Nilanjan Banerjee, Abhijit Dutt, Sai Praveen Kadiyala, and Ramana Vinjamuri. 2022. "Identifying Biomarkers for Accurate Detection of Stress" Sensors 22, no. 22: 8703. https://doi.org/10.3390/s22228703
APA StyleJambhale, K., Mahajan, S., Rieland, B., Banerjee, N., Dutt, A., Kadiyala, S. P., & Vinjamuri, R. (2022). Identifying Biomarkers for Accurate Detection of Stress. Sensors, 22(22), 8703. https://doi.org/10.3390/s22228703