Grain Size Distribution Analysis of Different Activator Doped Gd2O2S Powder Phosphors for Use in Medical Image Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis Analysis and Characterization
2.2. Description of the Monte Carlo Model
3. Results
3.1. The Structural Properties of the Phosphor Samples
3.2. Evaluation of Required Optical Parameters to Feed the Model
3.3. Light Emission Performance of Phosphor Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Nikl, M. Scintillation detectors for X-Rays. Meas. Sci. Technol. 2006, 17, R37–R54. [Google Scholar] [CrossRef]
- Van Eijk, C.W.E. Inorganic scintillators in medical imaging. Phys. Med. Biol. 2002, 47, R85–R106. [Google Scholar] [CrossRef] [PubMed]
- Michail, C. Image quality assessment of a CMOS/Gd2O2S:Pr,Ce,F X-Ray sensor. J. Sens. 2015, 2015, e874637. [Google Scholar] [CrossRef] [Green Version]
- Granfors, P.R.; Albagli, D. Scintillator-based flat-panel X-ray imaging detectors. J. Soc. Inf. Disp. 2009, 17, 535–542. [Google Scholar] [CrossRef]
- Linardatos, D.; Koukou, V.; Martini, N.; Konstantinidis, A.; Bakas, A.; Fountos, G.; Valais, I.; Michail, C. On the response of a micro non-destructive testing X-ray detector. Materials 2021, 14, 888. [Google Scholar] [CrossRef] [PubMed]
- Liaparinos, P.F. Light wavelength effects in submicrometer phosphor materials using mie scattering and monte carlo simulation. Med. Phys. 2013, 40, 101911. [Google Scholar] [CrossRef]
- Martini, N.; Koukou, V.; Michail, C.; Fountos, G. Mineral characterization in human body: A dual energy approach. Crystals 2021, 11, 345. [Google Scholar] [CrossRef]
- Martini, N.; Koukou, V.; Fountos, G.; Michail, C.; Bakas, A.; Kandarakis, I.; Speller, R.; Nikiforidis, G. Characterization of breast calcification types using dual energy X-ray method. Phys. Med. Biol. 2017, 62, 7741–7764. [Google Scholar] [CrossRef] [Green Version]
- Chander, H. Development of nanophosphors—A review. Mater. Sci. Eng. R Rep. 2005, 49, 113–155. [Google Scholar] [CrossRef]
- Gruner, S.M.; Tate, M.W.; Eikenberry, E.F. Charge-coupled device area X-ray detectors. Rev. Sci. Instrum. 2002, 73, 2815–2842. [Google Scholar] [CrossRef]
- Liaparinos, P.; Michail, C.; Valais, I.; Karabotsos, A.; Kandarakis, I. Optical emission characteristics of Gd2O2S:Tb powder phosphor under X-ray excitation: The Influence of Different Grain Size Distributions (GSDs). Appl. Phys. B 2022, 128, 76. [Google Scholar] [CrossRef]
- Liaparinos, P.; Michail, C.; Valais, I.; Karabotsos, A.; Bakas, A.; Kandarakis, I. The effect of the Grain Size Distribution (GSD) on the light emission performance of phosphor-based X-ray detectors. Opt. Mater. 2021, 119, 111319. [Google Scholar] [CrossRef]
- Phosphor Technology Ltd. X-Ray Phosphors. 2022. Available online: https://www.phosphor-technology.com/x-Ray-Phosphors/ (accessed on 16 May 2022).
- Yanagida, T. Inorganic scintillating materials and scintillation detectors. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 2018, 94, 75–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dujardin, C.; Auffray, E.; Bourret-Courchesne, E.; Dorenbos, P.; Lecoq, P.; Nikl, M.; Vasil’ev, A.N.; Yoshikawa, A.; Zhu, R. Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 2018, 65, 1977–1997. [Google Scholar] [CrossRef] [Green Version]
- Ghomrasni, N.B.; Chivas-Joly, C.; Devoille, L.; Hochepied, J.-F.; Feltin, N. Challenges in sample preparation for measuring nanoparticles size by scanning electron microscopy from suspensions, powder form and complex media. Powder Technol. 2020, 359, 226–237. [Google Scholar] [CrossRef]
- Liaparinos, P.F. Optical diffusion performance of nanophosphor-based materials for use in medical imaging. JBO 2012, 17, 126013. [Google Scholar] [CrossRef]
- Rogers, D.W.O. Fifty years of monte carlo simulations for medical physics. Phys. Med. Biol. 2006, 51, R287–R301. [Google Scholar] [CrossRef]
- Liaparinos, P. LIGHTAWE—Case studies of LIGHT SpreAd in PoWder materials: A MontE carlo simulation tool for research and educational purposes. Appl. Phys. B 2019, 125, 151. [Google Scholar] [CrossRef]
- Michail, C.; Valais, I.; Fountos, G.; Bakas, A.; Fountzoula, C.; Kalyvas, N.; Karabotsos, A.; Sianoudis, I.; Kandarakis, I. Luminescence efficiency of calcium tungstate (CaWO4) under X-ray radiation: Comparison with Gd2O2S:Tb. Measurement 2018, 120, 213–220. [Google Scholar] [CrossRef]
- Yousefi, B.; Castanedo, C.I.; Maldague, X.P.V.; Beaudoin, G. Assessing the reliability of an automated system for mineral identification using LWIR hyperspectral infrared imagery. Miner. Eng. 2020, 155, 106409. [Google Scholar] [CrossRef]
- Fern, G.; Ireland, T.; Silver, J.; Withnall, R.; Michette, A.; McFaul, C.; Pfauntsch, S. Characterisation of Gd2O2S:Pr phosphor screens for water window X-ray detection. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 600, 434–439. [Google Scholar] [CrossRef]
- Zhu, C.; Fan, L.-S. (Eds.) Size and properties of particles. In Principles of Gas-Solid Flows; Cambridge Series in Chemical Engineering; Cambridge University Press: Cambridge, UK, 1998; pp. 3–45. ISBN 978-0-521-02116-6. [Google Scholar]
- Whiting, J.; Fox, J. Characterization of feedstock in the powder bed fusion process: Sources of variation in particle size distribution and the factors that influence them. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 10 August 2016. [Google Scholar]
- Zhou, Y.; Li, F.; Wang, X.; Zhu, Q.; Li, X.; Sun, X.; Li, J.-G. Facile synthesis of Gd2O2SO4:Tb and Gd2O2S:Tb green phosphor nanopowders of unimodal size distribution and photoluminescence. Adv. Powder Technol. 2021, 32, 1911–1919. [Google Scholar] [CrossRef]
- Michail, C.M.; Fountos, G.P.; Liaparinos, P.F.; Kalyvas, N.E.; Valais, I.; Kandarakis, I.S.; Panayiotakis, G.S. Light emission efficiency and imaging performance of Gd2O2S:Eu powder scintillator under X-ray radiography conditions. Med. Phys. 2010, 37. [Google Scholar] [CrossRef] [PubMed]
- Somiya, S. (Ed.) Handbook of Advanced Ceramics (Second Edition) Part 1: Methods for Characterization of Advanced Ceramics; Academic Press: Oxford, UK, 2013; pp. 1213–1229. ISBN 978-0-12-385469-8. [Google Scholar]
- Kandarakis, I.; Cavouras, D. Role of the activator in the performance of scintillators used in X-ray imaging. Appl. Radiat. Isot. 2001, 54, 821–831. [Google Scholar] [CrossRef]
- Liaparinos, P.; Kalyvas, N.; Katsiotis, E.; Kandarakis, I. Investigating the particle packing of powder phosphors for imaging instrumentation technology: An examination of Gd2O2S:Tb phosphor. J. Inst. 2016, 11, P10001. [Google Scholar] [CrossRef]
Chemical Element | Gd2O2S:Tb UKL65/UF-R1 | Gd2O2S:Tb UKL65/F-R1 | Gd2O2S:Eu UKL63/UF-R1 | Gd2O2S:Eu UKL63/N-R1 | Gd2O2S:Pr.Ce.F UKL59CF/F-R1 | Gd2O2S:Pr.Ce.F UKL59CF/S-R1 |
---|---|---|---|---|---|---|
Gadolinium (Gd) | 78.53 | 78.11 | 74.62 | 77.07 | 76.63 | 75.48 |
Oxygen (O) | 12.82 | 12.09 | 15.24 | 13.39 | 14.47 | 15.47 |
Sulphur (S) | 6.90 | 6.81 | 8.68 | 8.62 | 7.99 | 8.09 |
Terbium (Tb) | 1.74 | 2.99 | - | - | - | - |
Europium (Eu) | - | - | 1.46 | 0.92 | - | - |
Praseodymium (Pr) | - | - | - | - | 0.31 | 0.32 |
Cerium (Ce) | - | - | - | - | 0.39 | 0.39 |
Fluorine (F) | - | - | - | - | 0.21 | 0.25 |
Totals | 100 | 100 | 100 | 100 | 100 | 100 |
Sample Descriptive Statistics | Gd2O2S:Tb UKL65/UF-R1 | Gd2O2S:Tb UKL65/F-R1 | Gd2O2S:Eu UKL63/UF-R1 | Gd2O2S:Eu UKL63/N-R1 | Gd2O2S:Pr,Ce,F UKL59CF/F-R1 | Gd2O2S:Pr,Ce,F UKL59CF/S-R1 |
---|---|---|---|---|---|---|
Mean grain size (μm) | 1.232 | 2.377 | 1.769 | 3.644 | 1.784 | 3.677 |
Standard error | 0.046 | 0.081 | 0.050 | 0.117 | 0.051 | 0.139 |
Median grain size (μm) | 1.105 | 2.170 | 1.604 | 3.582 | 1.675 | 3.338 |
Mode grain size (μm) | N/A | 1.473 | 1.435 | N/A | 1.766 | 3.326 |
Standard deviation | 0.424 | 1.031 | 0.701 | 1.170 | 0.566 | 1.542 |
Sample variance | 0.180 | 1.064 | 0.491 | 1.368 | 0.321 | 2.377 |
Kurtosis | 8.809 | 1.589 | 0.038 | 1.621 | 2.082 | 2.885 |
Skewness | 2.163 | 1.286 | 0.760 | 0.804 | 1.130 | 1.362 |
Range (μm) | 2.925 | 5.000 | 3.118 | 6.552 | 3.183 | 8.817 |
Minimum grain size (μm) | 0.566 | 0.894 | 0.609 | 1.422 | 0.884 | 1.162 |
Maximum grain size (μm) | 3.492 | 5.894 | 3.727 | 7.974 | 4.067 | 9.979 |
Counted grains | 83 | 162 | 196 | 100 | 125 | 123 |
Light Emission Performance | |||
---|---|---|---|
Absorption (%) | Reflection (%) | Transmission (%) | |
Thickness: 100 μm | |||
Gd2O2S:Tb (1.232 μm) | 24.51 | 43.3 | 32.19 |
Gd2O2S:Eu (1.769 μm) | 25.45 | 42.74 | 31.81 |
Gd2O2S:Pr,Ce,F (1.784 μm) | 19.23 | 45.94 | 34.83 |
Gd2O2S:Tb (2.377 μm) | 12.44 | 49.33 | 38.23 |
Gd2O2S:Eu (3.644 μm) | 8.17 | 51.37 | 40.46 |
Gd2O2S:Pr,Ce,F (3.677 μm) | 8.46 | 51.1 | 40.44 |
Light Emission Performance | |||
---|---|---|---|
Absorption (%) | Reflection (%) | Transmission (%) | |
Thickness: 200 μm | |||
Gd2O2S:Tb (1.232 μm) | 50.52 | 34.28 | 15.20 |
Gd2O2S:Eu (1.769 μm) | 42.15 | 38.92 | 18.93 |
Gd2O2S:Tb (2.377 μm) | 46.35 | 36.57 | 17.08 |
Gd2O2S:Eu (3.644 μm) | 31.98 | 44.49 | 23.53 |
Gd2O2S:Pr,Ce,F (3.677 μm) | 22.82 | 49.19 | 27.89 |
Gd2O2S:Tb (2.377 μm) | 21.89 | 49.69 | 28.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liaparinos, P.; Michail, C.; Valais, I.; Fountos, G.; Karabotsos, A.; Kandarakis, I. Grain Size Distribution Analysis of Different Activator Doped Gd2O2S Powder Phosphors for Use in Medical Image Sensors. Sensors 2022, 22, 8702. https://doi.org/10.3390/s22228702
Liaparinos P, Michail C, Valais I, Fountos G, Karabotsos A, Kandarakis I. Grain Size Distribution Analysis of Different Activator Doped Gd2O2S Powder Phosphors for Use in Medical Image Sensors. Sensors. 2022; 22(22):8702. https://doi.org/10.3390/s22228702
Chicago/Turabian StyleLiaparinos, Panagiotis, Christos Michail, Ioannis Valais, George Fountos, Athanasios Karabotsos, and Ioannis Kandarakis. 2022. "Grain Size Distribution Analysis of Different Activator Doped Gd2O2S Powder Phosphors for Use in Medical Image Sensors" Sensors 22, no. 22: 8702. https://doi.org/10.3390/s22228702
APA StyleLiaparinos, P., Michail, C., Valais, I., Fountos, G., Karabotsos, A., & Kandarakis, I. (2022). Grain Size Distribution Analysis of Different Activator Doped Gd2O2S Powder Phosphors for Use in Medical Image Sensors. Sensors, 22(22), 8702. https://doi.org/10.3390/s22228702