Structural and Magnetic Properties of FeNi Films and FeNi-Based Trilayers with Out-of-Plane Magnetization Component
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yabukami, S.; Suzuki, T.; Ajiro, N.; Kikuchi, H.; Yamaguchi, M.; Arai, K. A high frequency carrier-type magnetic field sensor using carrier suppressing circuit. IEEE Trans. Magn. 2001, 37, 2019–2021. [Google Scholar] [CrossRef]
- Gloanec, M.; Dubourg, S.; Acher, O.; Duverger, F.; Plessis, D.; Bonneau-Brault, A. Influence of a helical anisotropy profile on the static and dynamic properties of a soft magnetic layer. Phys. Rev. B 2012, 85, 094433. [Google Scholar] [CrossRef]
- Thompson, D.A.; Finzi, L.A.; Chang, H.; Albert, P. Magnetic film with helical anisotropy. J. Appl. Phys. 1966, 37, 1274–1276. [Google Scholar] [CrossRef]
- Álvarez-Prado, L.M.; Alameda, J.M. Micromagnetism of nanowires with low out-of plane-anisotropy. Physica B 2004, 343, 241–246. [Google Scholar] [CrossRef]
- Amos, N.; Fernández, R.; Ikkawi, R.; Lee, B.; Lavrenov, A.; Krichevsky, A.; Litvinov, D.; Khizroev, S. Magnetic force microscopy study of magnetic stripe domains in sputter deposited Permalloy thin films. J. Appl. Phys. 2008, 103, 07E732. [Google Scholar] [CrossRef]
- Svalov, A.V.; Aseguinolaza, I.R.; Garcia-Arribas, A.; Orue, I.; Barandiaran, J.M.; Alonso, J.; Fernández-Gubieda, M.L.; Kurlyandskaya, G.V. Structure and magnetic properties of thin Permalloy films near the “transcritical” state. IEEE Trans. Magn. 2010, 46, 333–336. [Google Scholar] [CrossRef]
- Garnier, L.-C.; Marangolo, M.; Eddrief, M.; Bisero, D.; Fin, S.; Casoli, F.; Pini, M.G.; Rettori, A.; Tacchi, S. Stripe domains reorientation in ferromagnetic films with perpendicular magnetic anisotropy. J. Phys. Mater. 2020, 3, 024001. [Google Scholar] [CrossRef]
- Dzhumaliev, A.S.; Vysotskii, S.L.; Sakharov, V.K. Effect of bias voltage and deposition rate on the structure and coercivity of NiFe films. Phys. Solid State 2020, 62, 2439–2444. [Google Scholar] [CrossRef]
- de Melo, A.S.; Bohn, F.; Ferreira, A.; Vaz, F.; Correa, M.A. High-frequency magnetoimpedance effect in meander-line trilayered films. J. Magn. Magn. Mater. 2020, 515, 167166. [Google Scholar] [CrossRef]
- Raj, R.; Kuila, M.; Gupta, M.; Reddy, V.R. 57Fe Mössbauer and magneto-optical Kerr effect (MOKE) study of transcritical state in permalloy (FexNi100-x) thin films. Hyperfine Interact. 2021, 242, 30. [Google Scholar] [CrossRef]
- Komogortsev, S.V.; Vazhenina, I.G.; Kleshnina, S.A.; Iskhakov, R.S.; Lepalovskij, V.N.; Pasynkova, A.A.; Svalov, A.V. Advanced characterization of FeNi-based films for the development of magnetic field sensors with tailored functional parameters. Sensors 2022, 23, 3324. [Google Scholar] [CrossRef] [PubMed]
- Ben Youssef, J.; Vukadinovic, N.; Billet, D.; Labrune, M. Thickness-dependent magnetic excitations in Permalloy films with nonuniform magnetization. Phys. Rev. B 2004, 69, 174402. [Google Scholar] [CrossRef]
- Ramos, C.A.; Vassallo Brigneti, E.; Gómez, J.; Butera, A. Stripe domains in Permalloy films as observed by ferromagnetic resonance and magnetic force microscopy. Phys. B 2009, 404, 2784–2786. [Google Scholar] [CrossRef]
- Huber, E.E.; Smith, D.O. Properties of Permalloy films having a magnetoelastic easy axis normal to the film. J. Appl. Phys. 1959, 30, S267–S269. [Google Scholar] [CrossRef]
- Cheng, S.F.; Lubitz, P.; Zheng, Y.; Edelstein, A.S. Effects of spacer layer on growth, stress and magnetic properties of sputtered permalloy film. J. Magn. Magn. Mater. 2004, 282, 109–114. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Elbaile, L.; Alves, F.; Ahamada, B.; Barrue, R.; Svalov, A.V.; Vas’kovskiy, V.O. Domain structure and magnetization process of a giant magnetoimpedance geometry FeNi/Cu/FeNi(Cu)FeNi/Cu/FeNi sensitive element. J. Phys. Condens. Matter. 2004, 16, 6561–6568. [Google Scholar] [CrossRef]
- Romera, M.; Ranchal, R.; Ciudad, D.; Maicas, M.; Aroca, C. Magnetic properties of sputtered Permalloy/molybdenum multilayers. J. Appl. Phys. 2011, 110, 083910. [Google Scholar] [CrossRef] [Green Version]
- Dastagir, T.; Xu, W.; Sinha, S.; Wu, H.; Cao, Y.; Yua, H. Tuning the permeability of permalloy films for on-chip inductor applications. Appl. Phys. Lett. 2010, 97, 162506. [Google Scholar] [CrossRef]
- Egelhoff, W.F., Jr.; Bonevich, J.; Pong, P.; Beauchamp, C.R.; Stafford, G.R.; Unguris, J.; McMichael, R.D. 400-fold reduction in saturation field by interlayering. J. Appl. Phys. 2009, 105, 013921. [Google Scholar] [CrossRef] [Green Version]
- Svalov, A.V.; Fernandez, E.; Garcia-Arribas, A.; Alonso, J.; Fdez-Gubieda, M.L.; Kurlyandskaya, G.V. FeNi-based magnetoimpedance multilayers: Tailoring of the softness by magnetic spacers. Appl. Phys. Lett. 2012, 100, 162410. [Google Scholar] [CrossRef]
- Nakai, T. Nondestructive detection of magnetic contaminant in aluminum casting using thin film magnetic sensor. Sensors 2021, 21, 4063. [Google Scholar] [CrossRef] [PubMed]
- Chihaya, H.; Kamiko, M.; Yamamoto, R. Effect of Ti seed layer on Co/Cu metallic multilayers: Changing Ti seed layer thickness. Thin Solid Films 2006, 515, 2542–2548. [Google Scholar] [CrossRef]
- Coïsson, M.; Vinal, F.; Tiberto, P.; Celegato, F. Magnetic properties of FeSiB thin films displaying stripe domains. J. Magn. Magn. Mater. 2009, 321, 806–809. [Google Scholar] [CrossRef]
- Lehrer, S.S. Rotatable anisotropy in negative magnetostriction Ni–Fe films. J. Appl. Phys. 1963, 34, 1207–1208. [Google Scholar] [CrossRef]
- Kern, P.R.; da Silva, O.E.; de Siqueira, J.V.; Della Pace, R.D.; Rigue, J.N.; Carara, M. A study on the thickness dependence of static and dynamic magnetic properties of Ni81Fe19 thin films. J. Magn. Magn. Mater. 2016, 419, 456–463. [Google Scholar] [CrossRef]
- Murayama, Y. Micromagnetics on stripe domain films. I. Critical cases. J. Phys. Soc. Japan 1966, 21, 2253–2266. [Google Scholar] [CrossRef]
- Sugita, Y.; Fujiwara, H.; Sato, T. Critical thickness and perpendicular anisotropy of evaporated permalloy films with stripe domains. Appl. Phys. Lett. 1967, 10, 229–231. [Google Scholar] [CrossRef]
- Asti, G.; Solzi, M.; Ghidini, M.; Neri, F.M. Micromagnetic analysis of exchange-coupled hard-soft planar nanocomposites. Phys. Rev. B 2004, 69, 174401. [Google Scholar] [CrossRef]
- McCord, J.; Erkartal, B.; von Hofe, T.; Kienle, L.; Quandt, E.; Roshchupkina, O.; Grenzer, J. Revisiting magnetic stripe domains —Anisotropy gradient and stripe asymmetry. J. Appl. Phys. 2013, 113, 073903. [Google Scholar] [CrossRef]
- Solovev, P.N.; Izotov, A.V.; Belyaev, B.A.; Boev, N.M. Micromagnetic simulation of domain structure in thin permalloy films with in-plane and perpendicular anisotropy. Physica B 2021, 604, 412699. [Google Scholar] [CrossRef]
- Holz, A.; Kronmüller, H. The nucleation of stripe domains in thin ferromagnetic films. Phys. Stat. Sol. 1969, 31, 787–798. [Google Scholar] [CrossRef]
- Donzelli, O.; Bassani, M.; Spizzo, F.; Palmeri, D. Reorientational transition and stripe domains in Co films. J. Magn. Magn. Mater. 2008, 320, e261–e263. [Google Scholar] [CrossRef]
- Li, M.; Tian, Z.; Yu, X.; Yu, D.; Ren, L.; Fu, Y. Influence of thermal annealing on the morphology and magnetic domain structure of Co thin films. Mater. Res. Express 2021, 8, 056103. [Google Scholar] [CrossRef]
- López Antón, R.; González, J.A.; Andrés, J.P.; Svalov, A.V.; Kurlyandskaya, G.V. Structural and magnetic properties of Ni0.8Fe0.2/Ti nanoscale multilayers. Nanomaterials 2018, 8, 780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svalov, A.V.; Vas’kovskiy, V.O.; Larrañaga, A.; Kurlyandskaya, G.V. Structure and magnetic properties of FeNi/Ti multilayered films grown by magnetron sputtering. Solid State Phenom. 2015, 233, 591–594. [Google Scholar] [CrossRef]
- Kravets, A.F.; Timoshevskii, A.N.; Yanchitsky, B.Z.; Bergmann, M.A.; Buhler, J.; Andersson, S.; Korenivski, V. Temperature-controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: A thermomagnetic Curie switch. Phys. Rev. B 2012, 86, 214413. [Google Scholar] [CrossRef] [Green Version]
- Zou, P.; Yu, W.; Bain, J.A. Influence of stress and texture on soft magnetic properties of thin films. IEEE Trans. Magn. 2002, 38, 3501–3520. [Google Scholar] [CrossRef]
- Liang, X.; Dong, C.; Chen, H.; Wang, J.; Wei, Y.; Zaeimbashi, M.; He, Y.; Matyushov, A.; Sun, C.; Sun, N. A review of thin-film magnetoelastic materials for magnetoelectric applications. Sensors 2020, 20, 1532. [Google Scholar] [CrossRef] [Green Version]
- Ustinov, V.V.; Yasyulevich, I.A. Chirality-dependent spin-transfer torque and current-induced spin rotation in helimagnets. Phys. Rev. B 2022, 106, 064417. [Google Scholar] [CrossRef]
- Correa, M.A.; Bohn, F.; Viegas, A.D.C.; de Andrade, A.M.H.; Schelp, L.F.; Sommer, R.L. Magnetoimpedance effect in structured multilayered amorphous thin films. J. Phys. D Appl. Phys. 2008, 41, 175003. [Google Scholar] [CrossRef]
- Buznikov, N.A.; Svalov, A.V.; Kurlyandskaya, G.V. Influence of the parameters of permalloy-based multilayer film structures on the sensitivity of magnetic impedance effect. Phys. Met. Metallogr. 2021, 122, 223–229. [Google Scholar] [CrossRef]
- Naumova, L.I.; Milyaev, M.A.; Zavornitsyn, R.S.; Pavlova, A.Y.; Maksimova, I.K.; Krinitsina, T.P.; Chernyshova, T.A.; Proglyado, V.V.; Ustinov, V.V. High-sensitive sensing elements based on spin valves with antiferromagnetic interlayer coupling. Phys. Met. Metallogr. 2019, 120, 653–659. [Google Scholar] [CrossRef]
- Gardner, D.S.; Schrom, G.; Paillet, F.; Jamieson, B.; Karnik, T.; Borkar, S. Review of on-chip inductor structures with magnetic films. IEEE Trans. Magn. 2009, 45, 4760–4766. [Google Scholar] [CrossRef]
- Melzer, M.; Kaltenbrunner, M.; Makarov, D.; Karnaushenko, D.; Karnaushenko, D.; Sekitani, T.; Someya, T.; Schmidt, O.G. Imperceptible magnetoelectronics. Nat. Commun. 2015, 6, 6080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimes, C.A. Sputter deposition of magnetic thin films onto plastic: The effect of undercoat and spacer layer composition on the magnetic properties of multilayer permalloy thin films. IEEE Trans. Magn. 1995, 31, 4109–4111. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A. Flexible thin-film magnetoimpedance sensors. J. Magn. Magn. Mater. 2016, 415, 91–96. [Google Scholar] [CrossRef]
- Koo, J.H.; Seo, J.; Lee, T. Nanomaterials on flexible substrates to explore innovative functions: From energy harvesting to bio-integrated electronics. Thin Solid Films 2012, 524, 1–19. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lim, Y.-S.; Choi, I.-H.; Lee, D.-I.; Kim, S.-B. Effective combination of soft magnetic materials for magnetic shielding. IEEE Trans. Magn. 2012, 48, 4550–4553. [Google Scholar] [CrossRef]
- Madrid Aguilar, C.M.; Svalov, A.V.; Kharlamova, A.M.; Shalygina, E.E.; Larrañaga, A.; Orue, I.; Kurlyandskaya, G.V. Magnetic and microwave properties of FeNi thin films of different thicknesses deposited onto cyclo olefin copolymer flexible substrates. IEEE Trans. Magn. 2022, 58, 2200105. [Google Scholar] [CrossRef]
- Nguyen, C. Analysis Methods for RF, Microwave, and Millimeter-Wave Planar Transmission Line Structures; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svalov, A.V.; Gorkovenko, A.N.; Larrañaga, A.; Volochaev, M.N.; Kurlyandskaya, G.V. Structural and Magnetic Properties of FeNi Films and FeNi-Based Trilayers with Out-of-Plane Magnetization Component. Sensors 2022, 22, 8357. https://doi.org/10.3390/s22218357
Svalov AV, Gorkovenko AN, Larrañaga A, Volochaev MN, Kurlyandskaya GV. Structural and Magnetic Properties of FeNi Films and FeNi-Based Trilayers with Out-of-Plane Magnetization Component. Sensors. 2022; 22(21):8357. https://doi.org/10.3390/s22218357
Chicago/Turabian StyleSvalov, Andrey V., Alexandr N. Gorkovenko, Aitor Larrañaga, Mikhail N. Volochaev, and Galina V. Kurlyandskaya. 2022. "Structural and Magnetic Properties of FeNi Films and FeNi-Based Trilayers with Out-of-Plane Magnetization Component" Sensors 22, no. 21: 8357. https://doi.org/10.3390/s22218357
APA StyleSvalov, A. V., Gorkovenko, A. N., Larrañaga, A., Volochaev, M. N., & Kurlyandskaya, G. V. (2022). Structural and Magnetic Properties of FeNi Films and FeNi-Based Trilayers with Out-of-Plane Magnetization Component. Sensors, 22(21), 8357. https://doi.org/10.3390/s22218357