# 3D Inductive Frequency Selective Structures Using Additive Manufacturing and Low-Cost Metallization

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Design and Manufacturing

#### 2.1. Square Aperture 3D FSS

#### 2.1.1. WoodPile FSS

#### 2.1.2. Torus

#### 2.2. Manufacturing

#### Full Structure Design

#### 2.3. Additive Manufacturing

#### 2.4. Nickel Spray Painting Metallization

#### 2.5. Copper Electroplating

## 3. Measurements

#### 3.1. Measurement Setup

#### 3.2. 3D Dielectric FSS

#### 3.3. 3D Metallized FSS

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

FSS | Frequency Selective Surfaces |

3DIFSS | Three-Dimensional Inductive Frequency Selective Structure |

AM | Additive Manufacturing |

SLA | Stereolithograpy |

IFSS | Inductive Frequency Selective Surfaces |

IPA | Iso-Propyl Alcohol |

PLA | Polylactic Acid |

ABS | Acrylonitrile Butadiene Styrene |

## References

- Wu, T.K. Frequency Selective Surface and Grid Array; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Munk, B.A. Frequency Selective Surfaces: Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2000; p. 416. [Google Scholar] [CrossRef]
- Azemi, S.N.; Ghorbani, K.; Rowe, W.S.T. 3D frequency selective surfaces. Prog. Electromagn. Res. C
**2012**, 29, 191–203. [Google Scholar] [CrossRef] [Green Version] - Rashid, A.K.; Li, B.; Shen, Z. An overview of three-dimensional frequency-selective structures. IEEE Antennas Propag. Mag.
**2014**, 56, 43–67. [Google Scholar] [CrossRef] - Azemi, S.N.; Ghorbani, K.; Rowe, W.S. A reconfigurable FSS using a spring resonator element. IEEE Antennas Wirel. Propag. Lett.
**2013**, 12, 781–784. [Google Scholar] [CrossRef] - Sivasamy, R.; Kanagasabai, M. Novel Reconfigurable 3D Frequency Selective Surface. IEEE Trans. Compon. Packag. Manuf. Technol.
**2017**, 7, 1678–1682. [Google Scholar] [CrossRef] - Rashid, A.K.; Shen, Z. A novel band-reject frequency selective surface with pseudo-elliptic response. IEEE Trans. Antennas Propag.
**2010**, 58, 1220–1226. [Google Scholar] [CrossRef] - Rashid, A.K.; Shen, Z.; Li, B. An elliptical bandpass frequency selective structure based on microstrip lines. IEEE Trans. Antennas Propag.
**2012**, 60, 4661–4669. [Google Scholar] [CrossRef] - Sanz-Izquierdo, B.; Parker, E.A. 3D printing of elements in frequency selective arrays. IEEE Trans. Antennas Propag.
**2014**, 62, 6060–6066. [Google Scholar] [CrossRef] - Zhu, D.Z.; Gregory, M.D.; Werner, P.L.; Werner, D.H. Fabrication and characterization of multiband polarization independent 3-d-printed frequency selective structures with ultrawide fields of view. IEEE Trans. Antennas Propag.
**2018**, 66, 6069–6105. [Google Scholar] [CrossRef] - Sanz-Izquierdo, B.; Parker, E.A. 3D printed FSS arrays for long wavelength applications. In Proceedings of the 8th European Conference on Antennas and Propagation, The Hague, The Netherlands, 6–11 April 2014; Volume 45, pp. 2382–2386. [Google Scholar] [CrossRef]
- Singh, D.; Yadav, R.P. A 3D printed square loop frequency selective surface for harmonic radar applications. J. Electromagn. Waves Appl.
**2020**, 34, 396–406. [Google Scholar] [CrossRef] - Singh, D.; Jain, A.; Yadav, R.P. Development of circular loop frequency selective surface using 3-d printing technique. Prog. Electromagn. Res. M
**2020**, 90, 195–203. [Google Scholar] [CrossRef] [Green Version] - Tang, W.; Zhu, J.; Wang, C.; Ge, J.; Yu, Z.; Zhuang, W. Waveguide 3D FSSs by 3D printing technique. In Proceedings of the 2016 18th International Conference on Electromagnetics in Advanced Applications, Queensland, Australia, 19–23 September 2016; pp. 675–678. [Google Scholar] [CrossRef]
- Cho, S.S.; Yoon, S.H.; Hong, I.P. Design of Three-Dimensional Frequency Selective Structure with Replaceable Unit Structures Using a 3D Printing Technique. IEEE Antennas Wirel. Propag. Lett.
**2018**, 17, 2041–2045. [Google Scholar] [CrossRef] - Carbon-fiber reinforced, S.S.U. Evaluation of One-Staged 3D Printed Frequency. IEEE Trans. Compon. Packag. Manuf. Technol.
**2019**, 9, 2298–2304. [Google Scholar] - Qin, Q.; Huang, J.; Yao, J.; Gao, W. Design and optimization of projection stereolithography additive manufacturing system with multi-pass scanning. Rapid Prototyp. J.
**2021**, 27, 636–642. [Google Scholar] [CrossRef] - Schlotthauer, T.; Nitsche, J.; Middendorf, P. Evaluation of UV post-curing depth for homogenous cross-linking of stereolithography parts. Rapid Prototyp. J.
**2021**, 27, 1910–1916. [Google Scholar] [CrossRef] - Hui, J.; Yan, Z.; Lv, J.; Liu, Y.; Ding, K.; Chan, F.T. An investigation on energy consumption and part quality of stereolithography apparatus manufactured parts. Rapid Prototyp. J.
**2021**. [Google Scholar] [CrossRef] - Uysal, E.; Çakir, M.; Ekici, B. Graphene oxide/epoxy acrylate nanocomposite production via SLA and importance of graphene oxide surface modification for mechanical properties. Rapid Prototyp. J.
**2021**, 27, 682–691. [Google Scholar] [CrossRef] - Liang, F.; Gao, J. A novel method for fabricating curved frequency selective surface via 3D printing technology. In Proceedings of the International Symposium on Optoelectronic Technology and Application 2014: Laser Materials Processing; and Micro/Nano Technologies, Beijing, China, 13–15 May 2014; Volume 9295, p. 929513. [Google Scholar] [CrossRef]
- Molero Jimenez, C.; Menargues, E.; Garcia-Vigueras, M. All-Metal 3D Frequency-Selective Surface with Versatile Dual-Band Polarization Conversion. IEEE Trans. Antennas Propag.
**2020**, 68, 5431–5441. [Google Scholar] [CrossRef] - Harnois, M.; Himdi, M.; Yong, W.Y.; Rahim, S.K.A.; Tekkouk, K.; Cheval, N. An Improved Fabrication Technique for the 3D Frequency Selective Surface based on Water Transfer Printing Technology. Sci. Rep.
**2020**, 10, 1714. [Google Scholar] [CrossRef] [Green Version] - Ederra, I.; Azcona, L.; Alderman, B.E.; Laisné, A.; Gonzalo, R.; Mann, C.M.; Matheson, D.N.; de Maagt, P. A 250 GHz subharmonic mixer design using EBG technology. IEEE Trans. Antennas Propag.
**2007**, 55, 2974–2982. [Google Scholar] [CrossRef] - Frezza, F.; Pajewski, L.; Piuzzi, E.; Ponti, C.; Schettini, G. Radiation-enhancement properties of an X-band woodpile EBG and its application to a planar antenna. Int. J. Antennas Propag.
**2014**, 2014, 729187. [Google Scholar] [CrossRef] - Sarabandi, K.; Behdad, N. A Frequency Selective Surface with Miniaturized Elements. IEEE Trans. Antennas Propag.
**2007**, 55, 1239–1245. [Google Scholar] [CrossRef] - Tamayo-Dominguez, A.; Sanchez-Olivares, P.; Camacho-Hernandez, A.; Fernandez-Gonzalez, J.M. Guidelines for Accurate In-House Electroplating and 3D-Printing Processes Applied to mm-Wave Devices. IEEE Microw. Wirel. Compon. Lett.
**2021**. submitted under review. [Google Scholar]

**Figure 1.**3D FSS unit cells designed to work in the V-band. (

**a**) 3D square aperture FSS, using the following dimensions: $w=4.5$ mm, $t=4.7$ mm, $v=$ 3 mm; (

**b**) intertwined Woodpile FSS, using the following dimensions: $g=0.85$ mm, $l=5$ mm; (

**c**) intertwined Thorus FSS, using the following dimensions: $Rin=0.9$ mm, $Rout=1.5$ mm.

**Figure 2.**S-Parameters of an inductive grid at normal incidence and TE-mode. The thickness of the structure is increased from 0.035 to 10 mm. (

**a**) reflection coefficient; (

**b**) transmission coefficient.

**Figure 3.**Reflection coefficient as a function of t and frequency, and the equivalent circuit of the square aperture illustrated in Figure 1a. The new resonances represented by shunt LC circuits appear as t increases.

**Figure 4.**S-Parameters of the Woodpile structure at normal incidence and TE-mode. The staking stage is increased from two to six through the z-axis. (

**a**) reflection coefficient; (

**b**) transmission coefficient.

**Figure 5.**S-Parameters of the Woodpile structure at normal incidence and TE-mode. The intertwined stage is increased from one to four through the z-axis. (

**a**) reflection coefficient; (

**b**) transmission coefficient.

**Figure 6.**3D IFSS prototypes in each of their manufacturing stages. (

**a**) square grid dielectric 3DFSS; (

**b**) woodpile grid dielectric 3DFSS; (

**c**) torus grid dielectric 3DFSS; (

**d**) square grid 3DIFSS with nickel spray; (

**e**) woodpile grid 3DIFSS with nickel spray; (

**f**) torus grid 3DIFSS with nickel spray; (

**g**) copper-electroplated square grid 3DIFSS; (

**h**) copper-electroplated woodpile grid 3DIFSS; (

**i**) copper-electroplated torus grid 3DIFSS.

**Figure 7.**Measurement setup used to characterize the 3D FSS structures. (

**a**) schematic representation of the measurement setup including distances and the names of the elements; (

**b**) actual photo of the measurement setup previous to the measurement of the torus 3D IFSS.

**Figure 8.**Simulated and measured transmission and reflection coefficients corresponding to the 3D dielectric FSS. (

**a**) square aperture; (

**b**) six-layer woodpile; (

**c**) four-layer torus.

**Figure 9.**Simulated and measured reflection and transmission coefficients of metallized structures using nickel spray and copper electroplating. (

**a**) reflection coefficient of the square aperture structure; (

**b**) reflection coefficient of the woodpile structure; (

**c**) reflection coefficient of the torus structure; (

**d**) transmission coefficient of the square aperture structure; (

**e**) transmission coefficient of the Woodpile structure; (

**f**) transmission coefficient of the torus structure.

**Table 1.**Current and time values for copper electroplating the square aperture, woodpile, and torus structures.

Square Aperture | Woodpile | Torus | |
---|---|---|---|

Area
(cm${}^{2}$) | 760.27 | 885.35 | 1002.69 |

Time (h) | 4 | 4 | 4 |

Current (A) | 3.8 | 4.42 | 5 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vásquez-Peralvo, J.A.; Tamayo-Domínguez, A.; Pérez-Palomino, G.; Fernández-González, J.M.; Wong, T.
3D Inductive Frequency Selective Structures Using Additive Manufacturing and Low-Cost Metallization. *Sensors* **2022**, *22*, 552.
https://doi.org/10.3390/s22020552

**AMA Style**

Vásquez-Peralvo JA, Tamayo-Domínguez A, Pérez-Palomino G, Fernández-González JM, Wong T.
3D Inductive Frequency Selective Structures Using Additive Manufacturing and Low-Cost Metallization. *Sensors*. 2022; 22(2):552.
https://doi.org/10.3390/s22020552

**Chicago/Turabian Style**

Vásquez-Peralvo, Juan Andrés, Adrián Tamayo-Domínguez, Gerardo Pérez-Palomino, José Manuel Fernández-González, and Thomas Wong.
2022. "3D Inductive Frequency Selective Structures Using Additive Manufacturing and Low-Cost Metallization" *Sensors* 22, no. 2: 552.
https://doi.org/10.3390/s22020552