High-Order Harmonic Film Bulk Acoustic Resonator Based on a Polymer Reflector
Abstract
:1. Introduction
2. Principle of the Polymer-FBAR
3. Results and Discussions
3.1. Electrode
3.2. Polymer Materials
3.3. Polyimide Thickness
3.4. Support Layer Thickness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skinner, J.L.; Cardinale, G.F.; Talin, A.A.; Brocato, R.W. Effect of critical dimension variation on SAW correlator energy. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Burkland, W.A.; Landin, A.R.; Kline, G.R.; Ketcham, R.S. A thin-film bulk-acoustic-wave resonator-controlled oscillator on silicon. IEEE Electron Device Lett. 1987, 8, 531–533. [Google Scholar] [CrossRef]
- Su, Q.X.; Kirby, P.; Komuro, E.; Imura, M.; Zhang, Q.; Whatmore, R. Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films. IEEE Trans. Microw. Theory Tech. 2001, 49, 769–778. [Google Scholar] [CrossRef]
- Wang, J.; Park, M.; Mertin, S.; Pensala, T.; Ayazi, F.; Ansari, A. A Film Bulk Acoustic Resonator Based on Ferroelectric Aluminum Scandium Nitride Films. J. Microelectromech. Syst. 2020, 29, 741–747. [Google Scholar] [CrossRef]
- Chung, C.J.; Chen, Y.C.; Cheng, C.C.; Kao, K.S. Synthesis and bulk acoustic wave properties on the dual mode frequency shift of solidly mounted resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 857–864. [Google Scholar] [CrossRef]
- Lv, L.; Shuai, Y.; Bai, X.; Huang, S.; Zhu, D.; Wang, Y.; Zhao, J.; Luo, W.; Wu, C.; Zhang, W. Wide Band BAW Filter Based on Single-Crystalline LiNbO₃; Thin Film With Insulating Bragg Reflector. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 1535–1541. [Google Scholar] [CrossRef]
- Gu, X.; Liu, J.; Cai, Y.; Liu, Y.; Gao, C.; Wen, Z.; Guo, S.; Sun, C. Laterally-excited bulk-wave resonators (XBARs) with embedded electrodes in 149.5° Z-cut LiNbO3. In Proceedings of the 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 25–29 April 2021; pp. 931–934. [Google Scholar]
- Yandrapalli, S.; Eroglu, S.E.K.; Plessky, V.; Atakan, H.B.; Villanueva, L.G. Study of Thin Film LiNbO3 Laterally Excited Bulk Acoustic Resonators. J. Microelectromech. Syst. 2022, 31, 217–225. [Google Scholar] [CrossRef]
- Zaitsev, B.D.; Shikhabudinov, A.M.; Teplykh, A.A.; Kuznetsova, I.E. Liquid sensor based on a piezoelectric lateral electric field-excited resonator. Ultrasonics 2015, 63, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Jan, M.E.; Belgacem, B.; Dubois, M.A.; Muralt, P. Shear mode coupling and properties dispersion in 8GHz range AlN thin film bulk acoustic wave (BAW) resonator. Thin Solid Film. 2006, 514, 341–343. [Google Scholar] [CrossRef]
- Chubarov, M.; Mercier, F.; Lay, S.; Charlot, F.; Crisci, A.; Coindeau, S.; Encinas, T.; Ferro, G.; Reboud, R.; Boichot, R. Growth of aluminum nitride on flat and patterned Si (111) by high temperature halide CVD. Thin Solid Film. 2017, 623, 65–71. [Google Scholar] [CrossRef]
- Zhao, Z.; Qian, Z.; Wang, B.; Yang, J.S. Energy trapping of thickness-extensional modes in thin film bulk acoustic wave resonators. J. Mech. Sci. Technol. 2015, 29, 2767–2773. [Google Scholar] [CrossRef]
- Zhao, Z.; Qian, Z.; Wang, B. Energy trapping of thickness-extensional modes in thin film bulk acoustic wave filters. AIP Adv. 2016, 6, 015002. [Google Scholar] [CrossRef]
- Piazza, G. Piezoelectric Aluminum Nitride Vibrating Contour-Mode MEMS Resonators. J. Microelectromech. Syst. 2013, 15, 1406–1418. [Google Scholar] [CrossRef]
- Jamneala, T.; Bradley, P.; Shirakawa, A.; Thalhammer, R.K.; Ruby, R. An Investigation of Lateral Modes in FBAR Resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.-F.; Tao, R.; Luo, J.; Zhou, X.; Zhou, J.; McHale, G.; Reboud, J.; Torun, H.; Gibson, D.; Tao, K.; et al. Rayleigh and shear-horizontal surface acoustic waves simultaneously generated in inclined ZnO films for acoustofluidic lab-on-a-chip. Surf. Coat. Technol. 2022, 442, 128336. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.; Li, D.; Xu, Y.; Li, Z. Solidly mounted resonators operated in thickness shear mode based on c-axis oriented AlN films. Sens. Actuators A Phys. 2011, 165, 379–384. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Bjurstrom, J.; Wingqvist, G.; Katardjiev, I. Synthesis of textured thin piezoelectric AlN films with a nonzero C-axis mean tilt for the fabrication of shear mode resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 2095–2100. [Google Scholar] [CrossRef]
- Lakin, K.M. A review of thin-film resonator technology. IEEE Microw. Mag. 2003, 4, 61–67. [Google Scholar] [CrossRef]
- Koskela, J.; Plessky, V. Coupling-of-Mode Analysis of SAW Devices. Int. J. High Speed Electron. Syst. 2000, 10, 867–947. [Google Scholar]
- Wright, P.V. Low-cost high-performance resonator and coupled-resonator design: NSPUDT and other innovative structures. In Proceedings of the 43rd Annual Symposium on Frequency Control, Denver, CO, USA, 31 May 1989–2 June 1989; pp. 574–587. [Google Scholar]
- Wang, J.S.; Lakin, K.M. Sputtered C-Axis Inclined ZnO Films for Shear Wave Resonators. In Proceedings of the 1982 Ultrasonics Symposium, San Diego, CA, USA, 27–29 October 1982; pp. 480–483. [Google Scholar]
- Li, M.; Seok, S.; Rolland, N.; Rolland, P.-A. Design, realization and test of a 2.1GHz ultra-low phase noise oscillator based on BAW resonator. AEU-Int. J. Electron. Commun. 2011, 65, 602–607. [Google Scholar] [CrossRef]
- Chaudhary, S.; Singh, J.; Haque, F.Z. BVD and Mason’s modelling of piezoelectric bulk acoustic resonators for high frequency applications. Mater. Today Proc. 2022, 65, 2556–2559. [Google Scholar] [CrossRef]
- Tiersten, H.F. Linear Piezoelectric Plate Vibrations; Springer: New York, NY, USA, 1969. [Google Scholar]
- Zhang, R.; Jiao, X.Q.; Yang, J.; Zhong, H.; Shi, Y. Electrode influence on effective electromechanical coupling coefficient of thin film bulk acoustic resonators. Mater. Res. Innov. 2014, 18, S4-606–S4-609. [Google Scholar] [CrossRef]
- Li, N.; Qian, Z.; Yang, J. Two-dimensional equations for piezoelectric thin-film acoustic wave resonators. Int. J. Solids Struct. 2017, 110–111, 170–177. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, H.; Ren, W.; Ye, Z.-G. Piezoelectric and ferroelectric materials: Fundamentals, recent progress, and applications. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Muralt, P. Piezoelectric Thin Films for MEMS. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 6999–7008. [Google Scholar]
- Uchino, K. Fundamentals of Piezoelectrics. In Encyclopedia of Smart Materials; Olabi, A.-G., Ed.; Elsevier: Oxford, UK, 2022; pp. 1–21. [Google Scholar]
- Kuznetsova, I.; Nedospasov, I.; Smirnov, A.; Qian, Z.-H.; Wang, B.; Dai, X.-Y. Excitation and detection of evanescent acoustic waves in piezoelectric plates: Theoretical and 2D FEM modeling. Ultrasonics 2019, 99, 105961. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.; Johannessen, A.; Rooth, S.; Hanke, U. The impact of area on BAW resonator performance and an approach to device miniaturization. Ultrasonics 2019, 94, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhang, S.-Y.; Zheng, K.; Lin, W.; Gao, H.-D. Calculation of electromechanical coupling coefficient of Lamb waves in multilayered plates. Ultrasonics 2006, 44, e849–e852. [Google Scholar] [CrossRef] [PubMed]
- Olsson, R.H.; Hattar, K.; Homeijer, S.J.; Wiwi, M.; Eichenfield, M.; Branch, D.W.; Baker, M.S.; Nguyen, J.; Clark, B.; Bauer, T.; et al. A high electromechanical coupling coefficient SH0 Lamb wave lithium niobate micromechanical resonator and a method for fabrication. Sens. Actuators A Phys. 2014, 209, 183–190. [Google Scholar] [CrossRef]
- Zhou, Q.-B.; Lu, Y.-K.; Zhang, S.-Y. Extraction of electromechanical coupling coefficient of piezoelectric thin films deposited on substrates. Ultrasonics 2001, 39, 377–382. [Google Scholar] [CrossRef]
- Muehleisen, R.T.; Swanson, D.C. Modal coupling in acoustic waveguides: Planar discontinuities. Appl. Acoust. 2002, 63, 1375–1392. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, X.; Wang, X.; Jin, H.; Li, S.; Dong, S.; Flewitt, A.J.; Milne, W.I.; Luo, J.K. Film bulk acoustic resonators integrated on arbitrary substrates using a polymer support layer. Sci. Rep. 2015, 5, 9510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ylilammi, M.; Ella, J.; Partanen, M.; Kaitila, J. Thin film bulk acoustic wave filter. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.-C.; Kao, K.-S.; Cheng, C.-C.; Chen, Y.-C. Deposition and structural properties of RF magnetron-sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device. Thin Solid Film. 2008, 516, 5262–5265. [Google Scholar] [CrossRef]
- Nam, K.; Park, Y.; Ha, B.; Kim, C.; Shin, J.; Yun, S.; Pak, J.; Park, G.; Song, I. Monolithic 1-Chip FBAR duplexer for W-CDMA handsets. Sens. Actuators A Phys. 2008, 143, 162–168. [Google Scholar] [CrossRef]
- Makkonen, T.; Pensala, T.; Vartiainen, J.; Knuuttila, J.V.; Kaitila, J.; Salomaa, M.M. Estimating materials parameters in thin-film BAW resonators using measured dispersion curves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Brachmann, E.; Seifert, M.; Ernst, D.; Menzel, S.B.; Gemming, T. Pt-wire bonding optimization for electroplated Pt films on γ-Al2O3 for high temperature and harsh environment applications. Sens. Actuators A Phys. 2018, 284, 129–134. [Google Scholar] [CrossRef]
- Clement, M.; Olivares, J.; Iborra, E.; González-Castilla, S.; Rimmer, N.; Rastogi, A. AlN films sputtered on iridium electrodes for bulk acoustic wave resonators. Thin Solid Film. 2009, 517, 4673–4678. [Google Scholar] [CrossRef]
- Petroni, S.; Tegola, C.L.; Caretto, G.; Campa, A.; Passaseo, A.; Vittorio, M.D.; Cingolani, R. Aluminum Nitride piezo-MEMS on polyimide flexible substrates. Microelectron. Eng. 2011, 88, 2372–2375. [Google Scholar] [CrossRef]
- Stokes, G.G. On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids; GeoScienceWorld: McLean, VA, USA, 2007; Volume 24. [Google Scholar]
Polymers | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|
PI | 3.1 | 0.34 |
PA | 2.0 | 0.28 |
PMMA | 3.0 | 0.40 |
PE | 1.0 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Dong, B.; Lei, L.; Wang, Z.; Ruan, S. High-Order Harmonic Film Bulk Acoustic Resonator Based on a Polymer Reflector. Sensors 2022, 22, 7439. https://doi.org/10.3390/s22197439
Hu Y, Dong B, Lei L, Wang Z, Ruan S. High-Order Harmonic Film Bulk Acoustic Resonator Based on a Polymer Reflector. Sensors. 2022; 22(19):7439. https://doi.org/10.3390/s22197439
Chicago/Turabian StyleHu, Yuxuan, Bo Dong, Liang Lei, Zhizhong Wang, and Shuangchen Ruan. 2022. "High-Order Harmonic Film Bulk Acoustic Resonator Based on a Polymer Reflector" Sensors 22, no. 19: 7439. https://doi.org/10.3390/s22197439
APA StyleHu, Y., Dong, B., Lei, L., Wang, Z., & Ruan, S. (2022). High-Order Harmonic Film Bulk Acoustic Resonator Based on a Polymer Reflector. Sensors, 22(19), 7439. https://doi.org/10.3390/s22197439