Simulation Study of High Sensitivity Fiber SPR Temperature Sensor with Liquid Filling
Abstract
:1. Introduction
2. Structural Design and Optimization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Z.-L.; Wu, H.; Tang, B.-H.; Qiu, S.; Li, Z.-L. Atmospheric corrections of passive microwave data for estimating land surface temperature. Opt. Express 2013, 21, 15654–15663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef]
- Ho, Y.-T.; Wang, Y.-L.; Chang, L.-C.; Wang, T.-P.; Tsai, J.-P. Optical system for monitoring groundwater pressure and temperature using fiber Bragg gratings. Opt. Express 2021, 29, 16032–16045. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Ma, C.; Chen, J.; Wu, H.; Luo, W.; Peng, Y.; Luo, Z.; Li, L.; Tan, Y.; Omisore, O.M. Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: A review. Nanoscale Res. Lett. 2020, 15, 200. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Li, L.; Wang, Y.; Lian, Z.; Chen, D.; Yu, C.; Lu, C. Temperature and curvature insensitive all-fiber sensor used for human breath monitoring. Opt. Express 2021, 29, 26375–26384. [Google Scholar] [CrossRef]
- Xu, X.; Luo, M.; Liu, J.; Luan, N. Fluorinated polyimide-film based temperature and humidity sensor utilizing fiber bragg grating. Sensors 2020, 20, 5469. [Google Scholar] [CrossRef] [PubMed]
- Paulson, B.; Jung, H.; Hwang, J.; Hong, S.; Lee, S.; Kim, J.K.; Oh, K. High sensitivity temperature measurement via mask-free hybrid polymer long period fiber grating. Opt. Express 2018, 26, 16125–16137. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xia, L.; Xie, Z.; Liu, D. All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 2012, 20, 11109–11120. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Kim, M.J.; Lee, B.H. All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Express 2007, 15, 5711–5720. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Jiang, J.; Liu, K.; Wang, S.; Wang, R.; Li, Y.; Liu, T. Fiber optical temperature compensated anemometer based on dual Fabry-Perot sensors with sealed cavity. Opt. Express 2019, 27, 18157–18168. [Google Scholar] [CrossRef]
- Li, F.; Li, X.-G.; Zhou, X.; Zhang, Y.-N.; Lv, R.-Q.; Zhao, Y.; Xie, L.-S.; Nguyen, L.V.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. Simultaneous measurement of temperature and relative humidity using cascaded C-shaped Fabry-Perot interferometers. J. Lightwave Technol. 2022, 40, 1209–1215. [Google Scholar] [CrossRef]
- Joseph, S.; Sarkar, S.; Joseph, J. Grating-Coupled Surface Plasmon-Polariton Sensing at a Flat Metal-Analyte Interface in a Hybrid-Configuration. ACS Appl. Mater. Interfaces 2020, 12, 46519–46529. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Yu, Z.; Dai, B.; Li, Y. Highly sensitive detection of refractive index and temperature based on liquid-filled D-shape PCF. IEEE Photonics Technol. Lett. 2021, 33, 529–532. [Google Scholar] [CrossRef]
- Liu, C.; Wang, F.; Lv, J.; Sun, T.; Liu, Q.; Fu, C.; Mu, H.; Chu, P.K. A highly temperature-sensitive photonic crystal fiber based on surface plasmon resonance. Opt. Commun. 2016, 359, 378–382. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Li, X.; Yan, X.; Zhang, X.; Wang, F.; Cheng, T. High-sensitivity SPR temperature sensor based on hollow-core fiber. IEEE Trans. Instrum. Meas. 2020, 69, 8494–8499. [Google Scholar] [CrossRef]
- Xu, Z.; Lim, J.; Hu, D.J.J.; Sun, Q.; Wong, R.Y.-N.; Li, K.; Jiang, M.; Shum, P.P. Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber. Opt. Express 2016, 24, 1699–1707. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Zhu, W.; Yang, M.; Lewis, E. Novel optical fiber SPR temperature sensor based on MMF-PCF-MMF structure and gold-PDMS film. Opt. Express 2018, 26, 1910–1917. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Chen, H.; Li, J.; Zhang, W.; Wang, M. Surface plasmon resonance induced high sensitivity temperature and refractive index sensor based on evanescent field enhanced photonic crystal fiber. J. Lightwave Technol. 2019, 38, 919–928. [Google Scholar] [CrossRef]
- Peng, Y.; Hou, J.; Zhang, Y.; Huang, Z.; Xiao, R.; Lu, Q. Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber. Opt. Lett. 2013, 38, 263–265. [Google Scholar] [CrossRef]
- Weng, S.; Pei, L.; Wang, J.; Ning, T.; Li, J. High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photonics Res. 2017, 5, 103–107. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, X.; Liang, Y.; Li, L.; Masson, J.-F.; Peng, W. Liquid crystal filled surface plasmon resonance thermometer. Opt. Express 2016, 24, 10904–10911. [Google Scholar] [CrossRef]
- Sharma, A.K.; Mohr, G.J. On the performance of surface plasmon resonance based fibre optic sensor with different bimetallic nanoparticle alloy combinations. J. Phys. D Appl. Phys. 2008, 41, 055106. [Google Scholar] [CrossRef]
- Shu, X.; Zhang, L.; Bennion, I. Sensitivity characteristics of long-period fiber gratings. J. Lightwave Technol. 2002, 20, 255. [Google Scholar]
- Wei, Y.; Li, L.; Liu, C.; Su, Y.; Zhao, X.; Wu, P.; Hu, J.; Wang, R.; Ran, Z.; Zhu, D. Dual-channel fiber surface plasmon resonance sensor based on a metallized core. Appl. Opt. 2021, 60, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, X.; Hong, X.; Deng, Y.; Song, K.; Geng, Y.; Wei, H.; Tong, W. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling. Opt. Express 2010, 18, 15383–15388. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, W.; Zhang, Q.; Liang, B.; Peng, Z.; Xu, J.; Zhu, C.; Li, J. High-performance tapered fiber surface plasmon resonance sensor based on the graphene/Ag/TiO2 layer. Plasmonics 2021, 16, 2291–2303. [Google Scholar] [CrossRef]
- Tan, Z.; Hao, X.; Shao, Y.; Chen, Y.; Li, X.; Fan, P. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor. Opt. Express 2014, 22, 15049–15063. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gan, S.; Zhang, G.; Dai, X. High sensitivity refractive index sensor based on surface plasmon resonance with topological insulator. Results Phys. 2019, 14, 102477. [Google Scholar] [CrossRef]
- Wei, Y.; Li, L.; Liu, C.; Hu, J.; Su, Y.; Wu, P.; Zhao, X. Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations. Chin. Phys. B 2021, 30, 100701. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, T.; Wu, H.; Feng, Y.; Wang, X. A temperature sensor based on D-shape photonic crystal fiber coated with Au–TiO2 and Ag–TiO2. Opt. Quantum Electron. 2021, 53, 678. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Zhang, Y.; Liu, S. Side-polished D-type fiber SPR sensor for RI sensing with temperature compensation. IEEE Sens. J. 2021, 21, 16621–16628. [Google Scholar] [CrossRef]
- Li, B.; Zhang, F.; Yan, X.; Zhang, X.; Wang, F.; Cheng, T. An Optical Fiber-Based Surface Plasmon Resonance Sensor for Simultaneous Measurement of Temperature and Magnetic Field Intensity. IEEE Trans. Instrum. Meas. 2021, 71, 7000407. [Google Scholar] [CrossRef]
Dispersion Coefficients | Metal | |
---|---|---|
Ag | Au | |
0.14541 | 0.16826 | |
17.614 | 8.9342 |
Reference | Year | Structure | Temperature Range (℃) | Sensitivity (nm/℃) |
---|---|---|---|---|
Ref. [14] | 2016 | PCF and Au | 0–100 | −3.08 |
Ref. [20] | 2017 | SMF and Au | 20–50 | −3.635 |
Ref. [15] | 2020 | HCF and Ag | 35.5–70.1 | −1.16 |
Ref. [29] | 2021 | SMF and Au | 35–95 | −1.765 |
Ref. [30] | 2021 | PCF and Ag | −15–35 | −4.5 |
Ref. [31] | 2021 | SMF and Au | 20–60 | −2.41 |
Ref. [32] | 2022 | MF and Ag | 20–60 | −1.96 |
Our work | - | SMF and Au and Ag | 20–50 | −6.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, M.; Teng, C.; Chen, M.; Cheng, Y.; Deng, S.; Li, F.; Deng, H.; Liu, H.; Yuan, L. Simulation Study of High Sensitivity Fiber SPR Temperature Sensor with Liquid Filling. Sensors 2022, 22, 5713. https://doi.org/10.3390/s22155713
Xiong M, Teng C, Chen M, Cheng Y, Deng S, Li F, Deng H, Liu H, Yuan L. Simulation Study of High Sensitivity Fiber SPR Temperature Sensor with Liquid Filling. Sensors. 2022; 22(15):5713. https://doi.org/10.3390/s22155713
Chicago/Turabian StyleXiong, Min, Chuanxin Teng, Ming Chen, Yu Cheng, Shijie Deng, Fuwang Li, Hongchang Deng, Houquan Liu, and Libo Yuan. 2022. "Simulation Study of High Sensitivity Fiber SPR Temperature Sensor with Liquid Filling" Sensors 22, no. 15: 5713. https://doi.org/10.3390/s22155713
APA StyleXiong, M., Teng, C., Chen, M., Cheng, Y., Deng, S., Li, F., Deng, H., Liu, H., & Yuan, L. (2022). Simulation Study of High Sensitivity Fiber SPR Temperature Sensor with Liquid Filling. Sensors, 22(15), 5713. https://doi.org/10.3390/s22155713