Multi-Feature Matching GM-PHD Filter for Radar Multi-Target Tracking
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Brief Survey of Related Work
1.3. Main Contributions
2. Background
2.1. Radar Multi-Target Tracking
2.2. PHD Filters Based on RFS
3. Multi-Feature Matching GM-PHD Filter
3.1. GM-PHD Filter
3.2. MFGM-PHD Filter
4. Simulations and Results Analysis
4.1. Simulations
4.2. Results Analysis
4.2.1. Filter Quality Analysis
4.2.2. Computational Complexity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tait, P. Introduction to Radar Target Recognition; IET: London, UK, 2009. [Google Scholar]
- Mahafza, B.R. Introduction to Radar Analysis; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Gao, Y.; Jiang, D.; Liu, M. Wideband transmit beamforming using integer-time-delayed and phase-shifted waveforms. Electron. Lett. 2017, 53, 376–378. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, R.; Zhou, C. Modified Bayesian Group Target Track Initiation Algorithm Based on Algebraic Graph Theory. J. Electron. Inf. Technol. 2021, 43, 531–538. [Google Scholar]
- Granstrom, K.; Lundquist, C.; Gustafsson, F.; Orguner, U. Random set methods: Estimation of multiple extended objects. IEEE Robot. Autom. Mag. 2014, 21, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Gao, Z.; Xie, C. Improved GM-PHD filter based on threshold separation clusterer for space-based starry-sky background weak point target tracking. Digit. Signal Process. 2020, 103, 102766. [Google Scholar] [CrossRef]
- Fortmann, T.; Bar-Shalom, Y.; Scheffe, M. Sonar tracking of multiple targets using joint probabilistic data association. IEEE J. Ocean. Eng. 1983, 8, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Vo, B.T.; Vo, B.N.; Cantoni, A. Bayesian Filtering with Random Finite Set Observations. IEEE Trans. Signal Process. 2008, 56, 1313–1326. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ji, L.; Yang, F.; Qu, X.; Yang, Z.; Qin, D. Cubature Information Gaussian Mixture Probability Hypothesis Density Approach for Multi Extended Target Tracking. IEEE Access. 2019, 7, 103678–103692. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, D.; Liu, M. Particle-gating SMC-PHD filter. Signal Process. 2017, 130, 64–73. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Z.; Xu, M. Cubature information SMC-PHD for multi-target tracking. Sensors 2016, 16, 653. [Google Scholar] [CrossRef] [Green Version]
- Vo, B.N.; Singh, S.; Doucet, A. Sequential Monte Carlo Methods for Multitarget Filtering with Random Finite Sets. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1224–1245. [Google Scholar]
- Li, T.; Sun, S.; Sattar, T.P. High-speed Sigma-gating SMC-PHD filter. Signal Process. 2013, 93, 2586–2593. [Google Scholar] [CrossRef]
- Beard, M.; Vo, B.T.; Vo, B.N.; Arulampalam, S. Gaussian mixture PHD and CPHD filtering with partially uniform target birth. In Proceedings of the 15th International Conference on Information Fusion, Singapore, 9–12 July 2012; pp. 535–541. [Google Scholar]
- Beard, M.; Vo, B.T.; Vo, B.N.; Arulampalam, S. A partially uniform target birth model for Gaussian mixture PHD/CPHD filtering. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2835–2844. [Google Scholar] [CrossRef]
- Vo, B.N.; Ma, W.K. The Gaussian mixture probability hypothesis density filter. IEEE Trans. Signal Process. 2006, 54, 4091–4104. [Google Scholar] [CrossRef]
- Reuter, S.; Vo, B.T.; Vo, B.N.; Dietmayer, K. The labeled multi-Bernoulli filter. IEEE Trans. Signal Process. 2014, 62, 3246–3260. [Google Scholar]
- Vo, B.N.; Vo, B.T.; Phung, D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans. Signal Process. 2014, 62, 6554–6567. [Google Scholar] [CrossRef] [Green Version]
- Vo, B.N.; Vo, B.T.; Hoang, H. An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter. IEEE Trans. Signal Process. 2017, 65, 1975–1987. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Jiang, D.; Zhang, C.; Guo, S. A Labeled GM-PHD Filter for Explicitly Tracking Multiple Target. Sensors 2021, 21, 3932. [Google Scholar] [CrossRef]
- Fu, Z.; Naqvi, S.M.; Chambers, J. Enhanced GM-PHD filter using CNN-based weight penalization for multi-target tracking. In Proceedings of the 2017 Sensor Signal Processing for Defence Conference, London, UK, 6–7 December 2017. [Google Scholar]
- He, Q.; Sun, X.; Yan, Z.; Li, B.; Fu, K. Multi-Object Tracking in Satellite Videos with Graph-Based Multitask Modeling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5619513. [Google Scholar] [CrossRef]
- Sun, X.; Wang, P.; Yan, Z.; Xu, F.; Wang, R. FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2022, 184, 116–130. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, K.; Zhang, Y.; Gao, Y.; Zhang, T. Feature aided extended target tracking for high resolution radar. In Proceedings of the 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May 2021; pp. 7224–7229. [Google Scholar]
- Delabeye, R.; Shin, H.S.; Inalhan, G. Feature-aided SMC-PHD filter for nonlinear multi-target tracking in cluttered environments. In Proceedings of the 9th International Conference on Robot Intelligence Technology and Applications, Daejeon, Korea, 16–17 December 2021; pp. 351–362. [Google Scholar]
- Pace, P.E. Detecting and Classifying Low Probability of Intercept Radar; Artech House: Norwood, MA, USA, 2009. [Google Scholar]
- Bell, K.L.; Baker, C.J.; Smith, G.E. Cognitive radar framework for target detection and tracking. IEEE J. Sel. Top. Signal Process. 2015, 9, 1427–1439. [Google Scholar] [CrossRef]
- Mahler, R. Multitarget Bayes Filtering via First-Order Multitarget Moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178. [Google Scholar] [CrossRef]
- Mahler, R. PHD filters of higher order in target number. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 1523–1543. [Google Scholar] [CrossRef]
- Schuhmacher, D.; Vo, B.T.; Vo, B.N. A Consistent Metric for Performance Evaluation of Multi-Object Filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef] [Green Version]
Algorithms | Average Computing Time (s) | ||||
---|---|---|---|---|---|
MFGM-PHD | 0.000782 | 0.000803 | 0.000804 | 0.000812 | 0.000819 |
GM-PHD | 0.024075 | 0.037566 | 0.051871 | 0.067186 | 0.072739 |
LGM-PHD | 0.002310 | 0.002337 | 0.003265 | 0.004861 | 0.007325 |
Joint-GLMB | 0.146440 | 0.356536 | 0.526839 | 0.599240 | 1.028731 |
Algorithm | Average Computing Time (s) | ||||
---|---|---|---|---|---|
MFGM-PHD | 0.000486 | 0.000819 | 0.000822 | 0.000827 | 0.000854 |
GM-PHD | 0.071858 | 0.072739 | 0.062451 | 0.065072 | 0.065333 |
LGM-PHD | 0.003895 | 0.007325 | 0.003369 | 0.003493 | 0.00304 |
Joint-GLMB | 0.905525 | 1.028731 | 1.071058 | 1.115119 | 1.182792 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Jiang, D.; Yang, J.; Zhang, C.; Wang, S.; Han, Y. Multi-Feature Matching GM-PHD Filter for Radar Multi-Target Tracking. Sensors 2022, 22, 5339. https://doi.org/10.3390/s22145339
Tao J, Jiang D, Yang J, Zhang C, Wang S, Han Y. Multi-Feature Matching GM-PHD Filter for Radar Multi-Target Tracking. Sensors. 2022; 22(14):5339. https://doi.org/10.3390/s22145339
Chicago/Turabian StyleTao, Jin, Defu Jiang, Jialin Yang, Chao Zhang, Song Wang, and Yan Han. 2022. "Multi-Feature Matching GM-PHD Filter for Radar Multi-Target Tracking" Sensors 22, no. 14: 5339. https://doi.org/10.3390/s22145339
APA StyleTao, J., Jiang, D., Yang, J., Zhang, C., Wang, S., & Han, Y. (2022). Multi-Feature Matching GM-PHD Filter for Radar Multi-Target Tracking. Sensors, 22(14), 5339. https://doi.org/10.3390/s22145339