Microbe-Based Sensor for Long-Term Detection of Urine Glucose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensors’ Construction and Operation
2.2. Sensor Characterization
2.3. Measurement and Analysis
3. Results
3.1. Physical and Electrochemical Characterization of Sensor
3.2. Accuracy and Stability of Glucose Detection with Different Sensor Configurations
3.3. Selectivity of CS
3.4. Improvement of CS Performance
3.5. Practical Application and Cost Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Larpant, N.; Kalambate, P.K.; Ruzgas, T.; Laiwattanapaisal, W. Based competitive immunochromatography coupled with an enzyme-modified electrode to enable the wireless monitoring and electrochemical sensing of cotinine in urine. Sensors 2021, 21, 1659. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Haleem, F.M.; Mahmoud, S.; Abdel-Ghani, N.E.T.; El Nashar, R.M.; Bechelany, M.; Barhoum, A. Polyvinyl chloride modified carbon paste electrodes for sensitive determination of levofloxacin drug in serum, urine, and pharmaceutical formulations. Sensors 2021, 21, 3150. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kim, I.; Roh, S.; Jung, H.G.; Lee, S.W.; Kim, H.S.; Yoon, D.S.; Hong, Y.; Lee, G. Selective colorimetric urine glucose detection by paper sensor functionalized with polyaniline nanoparticles and cell membrane. Anal. Chim. Acta 2021, 1158, 338387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Su, H.; Sun, F.; Lu, Z.; Su, A. A wearable self-powered biosensor system integrated with diaper for detecting the urine glucose of diabetic patients. Sens. Actuators B Chem. 2021, 341, 130046. [Google Scholar] [CrossRef]
- Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors 2017, 17, 1866. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chen, Z.; Cheng, F.; Zhang, Y.; Chen, L. Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods. Biosens. Bioelectron. 2017, 89, 932–936. [Google Scholar] [CrossRef]
- Lawlor, D.; Fraser, A.; Lindsay, R.; Ness, A.; Dabelea, D.; Catalano, P.; Smith, G.D.; Sattar, N.; Nelson, S. Association of existing diabetes, gestational diabetes and glycosuria in pregnancy with macrosomia and offspring body mass index, waist and fat mass in later childhood: Findings from a prospective pregnancy cohort. Diabetologia 2010, 53, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Li, D.; Xiao, L.; Sheerin, E.D.; Mullarkey, D.; Yang, L.; Bai, X.; Shvets, I.V.; Boland, J.J.; Wang, J.J. The influence of drinking water constituents on the level of microplastic release from plastic kettles. J. Hazard. Mater. 2021, 425, 127997. [Google Scholar] [CrossRef]
- Shi, Y.; Li, D.; Xiao, L.; Mullarkey, D.; Kehoe, D.K.; Sheerin, E.D.; Barwich, S.; Yang, L.; Gun’ko, Y.K.; Shvets, I.V.; et al. Real-world natural passivation phenomena can limit microplastic generation in water. Chem. Eng. J. 2022, 428, 132466. [Google Scholar] [CrossRef]
- Li, D.; Yang, L.; Kavanagh, R.; Xiao, L.; Shi, Y.; Kehoe, D.K.; Sheerin, E.D.; Gun’ko, Y.K.; Boland, J.J.; Wang, J.J. Sampling, identification and characterization of microplastics release from polypropylene baby feeding bottle during daily use. JoVE 2021, e62545. [Google Scholar] [CrossRef]
- Andriukonis, E.; Celiesiute-Germaniene, R.; Ramanavicius, S.; Viter, R.; Ramanavicius, A. From microorganism-based amperometric biosensors towards microbial fuel cells. Sensors 2021, 21, 2442. [Google Scholar] [CrossRef]
- Hilali, N.; Mohammadi, H.; Amine, A.; Zine, N.; Errachid, A. Recent advances in electrochemical monitoring of chromium. Sensors 2020, 20, 5153. [Google Scholar] [CrossRef]
- Zinovicius, A.; Rozene, J.; Merkelis, T.; Bruzaite, I.; Ramanavicius, A.; Morkvenaite-Vilkonciene, I. Evaluation of a yeast–polypyrrole biocomposite used in microbial fuel cells. Sensors 2022, 22, 327. [Google Scholar] [CrossRef]
- Logan, B.E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337, 686–690. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Shi, Y.; Gao, F.; Yang, L.; Li, S.; Xiao, L. Understanding the current plummeting phenomenon in microbial fuel cells (MFCs). J. Water Process Eng. 2021, 40, 101984. [Google Scholar] [CrossRef]
- Abdelhay, A.; Jum’h, I.; Albsoul, A.; Abu Arideh, D.; Qatanani, B. Performance of electrochemical oxidation over BDD anode for the treatment of different industrial dye-containing wastewater effluents. J. Water Reuse Desalin. 2021, 11, 110–121. [Google Scholar] [CrossRef]
- Zeng, L.; Li, X.; Shi, Y.; Qi, Y.; Huang, D.; Tadé, M.; Wang, S.; Liu, S. FePO 4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin. Biosens. Bioelectron. 2017, 91, 367–373. [Google Scholar] [CrossRef]
- Di Lorenzo, M.; Thomson, A.R.; Schneider, K.; Cameron, P.J.; Ieropoulos, I. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens. Bioelectron. 2014, 62, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Yu, W.; Graham, N.; Zhao, Y. Revisiting the bioelectrochemical system based biosensor for organic sensing and the prospect on constructed wetland-microbial fuel cell. Chemosphere 2021, 264, 128532. [Google Scholar] [CrossRef]
- Cho, J.H.; Gao, Y.; Choi, S. A portable, single-use, paper-based microbial fuel cell sensor for rapid, on-site water quality monitoring. Sensors 2019, 19, 5452. [Google Scholar] [CrossRef] [Green Version]
- Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef] [Green Version]
- Beisel, C.L.; Afroz, T. Rethinking the hierarchy of sugar utilization in bacteria. J. Bacteriol. 2016, 198, 374–376. [Google Scholar] [CrossRef] [Green Version]
- Melzer, K. Carbohydrate and fat utilization during rest and physical activity. e-SPEN Eur. E-J. Clin. Nutr. Metab. 2011, 6, e45–e52. [Google Scholar] [CrossRef] [Green Version]
- Modin, O.; Wilén, B.-M. A novel bioelectrochemical BOD sensor operating with voltage input. Water Res. 2012, 46, 6113–6120. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Park, S.; Nguyen, V.K.; Yu, J.; Torres, C.I.; Rittmann, B.E.; Lee, T. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater. Chem. Eng. J. 2017, 316, 673–679. [Google Scholar] [CrossRef]
- Li, D.; Shi, Y.; Gao, F.; Yang, L.; Kehoe, D.K.; Romeral, L.; Gun’ko, Y.K.; Lyonsa, M.G.; Wang, J.J.; Mullarkey, D.; et al. Characterising and control of ammonia emission in microbial fuel cells. Chem. Eng. J. 2020, 389, 124462. [Google Scholar] [CrossRef]
- Yang, W.; He, W.; Zhang, F.; Hickner, M.A.; Logan, B.E. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells. Environ. Sci. Technol. Lett. 2014, 1, 416–420. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Logan, B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38, 4040–4046. [Google Scholar] [CrossRef]
- Chen, Z.; Li, K.; Zhang, P.; Pu, L.; Zhang, X.; Fu, Z. The performance of activated carbon treated with H3PO4 at 80° C in the air-cathode microbial fuel cell. Chem. Eng. J. 2015, 259, 820–826. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Rossi, R.; Logan, B.E. Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. Chem. Eng. J. 2020, 380, 122522. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhou, B.; Zhu, T.; Shi, J.; Xu, Z.; Hu, C.; Wang, J. Facile and low-cost approach towards a PVDF ultrafiltration membrane with enhanced hydrophilicity and antifouling performance via graphene oxide/water-bath coagulation. RSC Adv. 2015, 5, 7880–7889. [Google Scholar] [CrossRef]
- Yun, K.-S.; Kim, B.-R.; Kang, W.-S.; Jung, S.-C.; Myung, S.-T.; Kim, S.-J. Preparation of carbon blacks by liquid phase plasma (LPP) process. J. Nanosci. Nanotechnol. 2013, 13, 7381–7385. [Google Scholar] [CrossRef]
- Liou, T.-H. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 2010, 158, 129–142. [Google Scholar] [CrossRef]
- Xing, Z.; Gao, N.; Qi, Y.; Ji, X.; Liu, H. Influence of enhanced carbon crystallinity of nanoporous graphite on the cathode performance of microbial fuel cells. Carbon 2017, 115, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Campanella, L.; Bonanni, A.; Favero, G.; Tomassetti, M. Determination of antioxidant properties of aromatic herbs, olives and fresh fruit using an enzymatic sensor. Anal. Bioanal. Chem. 2003, 375, 1011–1016. [Google Scholar] [CrossRef]
- Liang, B.; Li, L.; Tang, X.; Lang, Q.; Wang, H.; Li, F.; Shi, J.; Shen, W.; Palchetti, I.; Mascini, M. Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosens. Bioelectron. 2013, 45, 19–24. [Google Scholar] [CrossRef]
- Yang, W.; Rossi, R.; Tian, Y.; Kim, K.-Y.; Logan, B.E. Mitigating external and internal cathode fouling using a polymer bonded separator in microbial fuel cells. Bioresour. Technol. 2017, 249, 1080–1084. [Google Scholar] [CrossRef]
- An, J.; Li, N.; Wan, L.; Zhou, L.; Du, Q.; Li, T.; Wang, X. Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells. Water Res. 2017, 123, 369–377. [Google Scholar] [CrossRef]
- del Campo, A.G.; Lobato, J.; Cañizares, P.; Rodrigo, M.; Morales, F.F. Short-term effects of temperature and COD in a microbial fuel cell. Appl. Energy 2013, 101, 213–217. [Google Scholar] [CrossRef]
- Ou, S.; Zhao, Y.; Aaron, D.S.; Regan, J.M.; Mench, M.M. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition. J. Power Sources 2016, 328, 385–396. [Google Scholar] [CrossRef]
- Williams, G.J.; Macaskill, P.; Chan, S.F.; Turner, R.M.; Hodson, E.; Craig, J.C. Absolute and relative accuracy of rapid urine tests for urinary tract infection in children: A meta-analysis. Lancet Infect. Dis. 2010, 10, 240–250. [Google Scholar] [CrossRef]
- Logan, B.E.; Wallack, M.J.; Kim, K.-Y.; He, W.; Feng, Y.; Saikaly, P.E. Assessment of microbial fuel cell configurations and power densities. Environ. Sci. Technol. Lett. 2015, 2, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Tester, R.F. Lactose, maltose, and sucrose in health and disease. Mol. Nutr. Food Res. 2020, 64, 1901082. [Google Scholar] [CrossRef]
- Mack, C.I.; Weinert, C.H.; Egert, B.; Ferrario, P.G.; Bub, A.; Hoffmann, I.; Watzl, B.; Daniel, H.; Kulling, S.E. The complex human urinary sugar profile: Determinants revealed in the cross-sectional KarMeN study. Am. J. Clin. Nutr. 2018, 108, 502–516. [Google Scholar] [CrossRef]
- Weser, E.; Sleisenger, M.H.; Dickstein, M.; Bartley, F.H. Metabolism of circulating disaccharides in man and the rat. J. Clin. Investig. 1967, 46, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Moolenaar, S.H.; Knaap, M.S.v.d.; Engelke, U.F.; Pouwels, P.J.; Janssen-Zijlstra, F.S.; Verhoeven, N.M.; Jakobs, C.; Wevers, R.A. In vivo and in vitro NMR spectroscopy reveal a putative novel inborn error involving polyol metabolism. NMR Biomed. Int. J. Devoted Dev. Appl. Magn. Reson. In Vivo 2001, 14, 167–176. [Google Scholar] [CrossRef]
- Song, J.; Liu, L.; Yang, Q.; Liu, J.; Yu, T.; Yang, F.; Crittenden, J. PVDF layer as a separator on the solution-side of air-cathodes: The electricity generation, fouling and regeneration. Rsc Advances 2015, 5, 52361–52368. [Google Scholar] [CrossRef]
- Chatterjee, P.; Ghangrekar, M. Preparation of a fouling-resistant sustainable cathode for a single-chambered microbial fuel cell. Water Sci. Technol. 2014, 69, 634–639. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Son, M.; Logan, B.E. Simultaneously enhancing power density and coulombic efficiency with a hydrophobic Fe–N4/activated carbon air cathode for microbial fuel cells. J. Power Sour. 2020, 465, 228264. [Google Scholar] [CrossRef]
- Shetty, P. India’s diabetes time bomb. Nature 2012, 485, S14. [Google Scholar] [CrossRef]
- Wang, L.; Gao, P.; Zhang, M.; Huang, Z.; Zhang, D.; Deng, Q.; Li, Y.; Zhao, Z.; Qin, X.; Jin, D. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA 2017, 317, 2515–2523. [Google Scholar] [CrossRef]
Elements | C | O | F | P | Ca |
---|---|---|---|---|---|
New cathode | 37.6 ± 3.7% | 8.1 ± 0.2% | 9.4 ± 1.4% | 5.1 ± 0.2% | 1.4 ± 0.2% |
Used cathode | 48.6 ± 1.2% | 4.1 ± 0.3% | 9.0 ± 0.04% | 3.1 ± 0.1% | 1.9 ± 0.3% |
Samples | Concentration Detected by Analyzer (Glucose, mM) | Concentration Detected by CS (Glucose, mM; N = 3) | Recovery (%) | %RSD |
---|---|---|---|---|
Urine 1 | 8.4 | 9.2 ± 0.9 | 109.4% | 16.8% |
Urine 2 | 11.5 | 10.8 ± 2.8 | 93.6% | 25.7% |
Urine 3 | 18.7 | 24.0 ± 4.5 | 127.9% | 18.6% |
Urine 4 | 21.5 | 21.5 ± 4.0 | 99.9% | 18.5% |
Urine 5 | 7.5 | 8.9 ± 3.9 | 119.0% | 43.4% |
Urine 6 | 22.3 | 22.2 ± 4.5 | 99.4% | 20.2% |
Urine 7 | 15.3 | 14.6 ± 3.2 | 95.7% | 21.7% |
Urine 8 | 31.9 | 34.7 ± 1.9 | 108.8% | 5.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Shi, Y.; Sun, Y.; Wang, Z.; Kehoe, D.K.; Romeral, L.; Gao, F.; Yang, L.; McCurtin, D.; Gun’ko, Y.K.; et al. Microbe-Based Sensor for Long-Term Detection of Urine Glucose. Sensors 2022, 22, 5340. https://doi.org/10.3390/s22145340
Li D, Shi Y, Sun Y, Wang Z, Kehoe DK, Romeral L, Gao F, Yang L, McCurtin D, Gun’ko YK, et al. Microbe-Based Sensor for Long-Term Detection of Urine Glucose. Sensors. 2022; 22(14):5340. https://doi.org/10.3390/s22145340
Chicago/Turabian StyleLi, Dunzhu, Yunhong Shi, Yifan Sun, Zeena Wang, Daniel K. Kehoe, Luis Romeral, Fei Gao, Luming Yang, David McCurtin, Yurii K. Gun’ko, and et al. 2022. "Microbe-Based Sensor for Long-Term Detection of Urine Glucose" Sensors 22, no. 14: 5340. https://doi.org/10.3390/s22145340
APA StyleLi, D., Shi, Y., Sun, Y., Wang, Z., Kehoe, D. K., Romeral, L., Gao, F., Yang, L., McCurtin, D., Gun’ko, Y. K., Lyons, M. E. G., & Xiao, L. (2022). Microbe-Based Sensor for Long-Term Detection of Urine Glucose. Sensors, 22(14), 5340. https://doi.org/10.3390/s22145340