Multilevel RTN Removal Tools for Dynamic FBG Strain Measurements Corrupted by Peak-Splitting Artefacts
Abstract
:1. Introduction
2. Peak Splitting Artefacts in Measurement Data
3. Reconstruction Methods
3.1. Outlier Detection
3.1.1. Histogram Based Filtering Threshold
Algorithm 1 Histogram based threshold selection. | |
|
|
3.1.2. Hampel Identifiers
3.2. Outlier Replacement
3.3. Integration and Drift Correction
4. Data Description
5. Results
5.1. Separable Difference Histograms
5.2. Overlapping Difference Histograms
5.3. Threshold Sensitivity for Overlapping Difference Histograms
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
fbg | Fibre Bragg grating |
med | median |
rtn | Random telegraph noise |
mad | Median absolute deviation |
ipr | Inter percentile range |
Appendix A. Selected Histograms
References
- Kreuzer, M. Strain Measurement with Fiber Bragg Grating Sensors; HBM: Damrstadt, Germany, 2006; p. 11. [Google Scholar]
- Lamberti, A.; Vanlanduit, S.; De Pauw, B.; Berghmans, F. Influence of Fiber Bragg Grating Spectrum Degradation on the Performance of Sensor Interrogation Algorithms. Sensors 2014, 14, 24258–24277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negri, L.; Nied, A.; Kalinowski, H.; Paterno, A. Benchmark for Peak Detection Algorithms in Fiber Bragg Grating Interrogation and a New Neural Network for its Performance Improvement. Sensors 2011, 11, 3466–3482. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, G.; Voet, E.; Lammens, N.; Degrieck, J. Strain Measurements of Composite Laminates with Embedded Fibre Bragg Gratings: Criticism and Opportunities for Research. Sensors 2010, 11, 384–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, H.Y.; Lau, K.T.; Jin, W.; Chan, K.C. Characterization of dynamic strain measurement using reflection spectrum from a fiber Bragg grating. Opt. Commun. 2007, 270, 25–30. [Google Scholar] [CrossRef]
- Zhang, X.; Max, J.J.; Jiang, X.; Yu, L.; Kassi, H. Experimental investigation on optical spectral deformation of embedded FBG sensors. In Photonics Packaging, Integration, and Interconnects VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2007. [Google Scholar] [CrossRef]
- Tarnowski, K.; Urbanczyk, W. Origin of Bragg reflection peaks splitting in gratings fabricated using a multiple order phase mask. Opt. Express 2013, 21, 21800. [Google Scholar] [CrossRef] [PubMed]
- Propst, A.; Peters, K.; Zikry, M.A.; Schultz, S.; Kunzler, W.; Zhu, Z.; Wirthlin, M.; Selfridge, R. Assessment of damage in composite laminates through dynamic, full-spectral interrogation of fiber Bragg grating sensors. Smart Mater. Struct. 2010, 19, 015016. [Google Scholar] [CrossRef] [Green Version]
- Takeda, S.; Yamamoto, T.; Okabe, Y.; Takeda, N. Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors. Smart Mater. Struct. 2007, 16, 763–770. [Google Scholar] [CrossRef]
- Micron Optics. TN1107 si255 Hyperion Features and Applications. 2015. Available online: https://lunainc.com/sites/default/files/assets/files/resource-library/TN1107_si255_Hyperion_Features_and_Applications.pdf (accessed on 12 October 2021).
- Weijtjens, W.; Iliopoulos, A.; Helsen, J.; Devriendt, C. Monitoring the consumed fatigue life of wind turbines on monopile foundations. In Proceedings of the EWEA Offshore Conference, Copenhagen, Denmark, 10–12 March 2015. [Google Scholar]
- Iliopoulos, A.; Weijtjens, W.; Van Hemelrijck, D.; Devriendt, C. Fatigue assessment of offshore wind turbines on monopile foundations using multi-band modal expansion: Fatigue assessment of monopile OWTs using multi-band modal expansion. Wind Energy 2017, 20, 1463–1479. [Google Scholar] [CrossRef]
- Maes, K.; Iliopoulos, A.; Weijtjens, W.; Devriendt, C.; Lombaert, G. Dynamic strain estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms. Mech. Syst. Signal Process. 2016, 76–77, 592–611. [Google Scholar] [CrossRef]
- Sutherland, H.J. On the Fatigue Analysis of Wind Turbines. In Technical Report SAND99-0089; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA; Sandia National Lab. (SNL-CA): Livermore, CA, USA, 1999. [Google Scholar] [CrossRef] [Green Version]
- Czyzewski, A. Some methods for detection and interpolation of impulsive distortions in old audio recordings. In Proceedings of the 1995 Workshop on Applications of Signal Processing to Audio and Accoustics, New Paltz, NY, USA, 15–18 October 1995; pp. 139–142. [Google Scholar] [CrossRef]
- Oudre, L. Automatic Detection and Removal of Impulsive Noise in Audio Signals. Image Process. Line 2015, 5, 267–281. [Google Scholar] [CrossRef] [Green Version]
- Godsill, S.J.; Rayner, P.J.W. Digital Audio Restoration—A Statistical Model-Based Approach; Springer: London, UK, 1998; p. 346. [Google Scholar]
- Koivisto, P.; Astola, J.; Lukin, V.; Melnik, V.; Tsymbal, O. Removing Impulse Bursts from Images by Training-Based Filtering. EURASIP J. Adv. Signal Process. 2003, 2003, 472580. [Google Scholar] [CrossRef] [Green Version]
- Kolhatkar, J.; Vandamme, L.; Salm, C.; Wallinga, H. Separation of random telegraph signals from 1/f noise in MOSFETs under constant and switched bias conditions. In Proceedings of the ESSDERC ’03, 33rd Conference on European Solid-State Device Research, Estoril, Portugal, 16–18 September 2003; pp. 549–552. [Google Scholar] [CrossRef]
- Hendrickson, B.; Widenhorn, R.; DeStefano, P.R.; Bodegom, E. Detection and Reconstruction of Random Telegraph Signals Using Machine Learning. Available online: https://www.benjaminhendrickson.com/s/ML-IEEE-Hendrickson.pdf (accessed on 12 October 2021).
- Zheng, R.; Zhao, R.; Ma, Y.; Li, B.; Wei, X.; Wang, J.; Gao, W.; Wei, T.; Gao, D.; Hu, Y. A Real-time Auto-detection Method for Random Telegraph Signal (RTS) Noise Detection in CMOS Active pixel sensors. J. Instrum. 2015, 10, C07013. [Google Scholar] [CrossRef]
- Campanella, C.E.; Cuccovillo, A.; Campanella, C.; Yurt, A.; Passaro, V.M.N. Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications. Sensors 2018, 18, 3115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, R.K.; Neuvo, Y.; Astola, J.; Gabbouj, M. Generalized Hampel Filters. EURASIP J. Adv. Signal Process. 2016, 2016, 87. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Rousseeuw, P.; Croux, P. Alternatives to the Median Absolute Deviation. J. Am. Stat. Assoc. 1993, 88, 1273–1283. [Google Scholar] [CrossRef]
- Fallais, D.J.M. py_peak_splitting, v0.0.2, GitHub Repository, Codebase. 2021. Available online: https://github.com/OWI-Lab/py_peak_splitting (accessed on 12 October 2021).
Data Set | Nr. Signals | Nr. Samples (N) | Range of Histogram Widths | Range of OTNR’s * |
---|---|---|---|---|
Separable.hdf5 | 15 | 60,000 | 8.25–16.76 | 0.032–0.072 |
Overlapping.hdf5 | 15 | 60,000 | 3.22–6.12 | 0.028–0.079 |
Separable difference histogram: Separable.hdf5 | ||||
Method | th. | th. scale | buffer/segment | fit order |
th | 0 | 1 | 25 | 1 |
ha | - | 3 | 25 | 1 |
Overlapping difference histograms: Overlapping.hdf5 | ||||
Method | th. | th. scale | buffer/segment | fit order |
th | 0.01N | 1 | 25 | 1 |
ha | - | 1.96 | 25 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fallais, D.J.M.; Henkel, M.; Noppe, N.; Weijtjens, W.; Devriendt, C. Multilevel RTN Removal Tools for Dynamic FBG Strain Measurements Corrupted by Peak-Splitting Artefacts. Sensors 2022, 22, 92. https://doi.org/10.3390/s22010092
Fallais DJM, Henkel M, Noppe N, Weijtjens W, Devriendt C. Multilevel RTN Removal Tools for Dynamic FBG Strain Measurements Corrupted by Peak-Splitting Artefacts. Sensors. 2022; 22(1):92. https://doi.org/10.3390/s22010092
Chicago/Turabian StyleFallais, Dominik Johannes Marius, Maximilian Henkel, Nymfa Noppe, Wout Weijtjens, and Christof Devriendt. 2022. "Multilevel RTN Removal Tools for Dynamic FBG Strain Measurements Corrupted by Peak-Splitting Artefacts" Sensors 22, no. 1: 92. https://doi.org/10.3390/s22010092
APA StyleFallais, D. J. M., Henkel, M., Noppe, N., Weijtjens, W., & Devriendt, C. (2022). Multilevel RTN Removal Tools for Dynamic FBG Strain Measurements Corrupted by Peak-Splitting Artefacts. Sensors, 22(1), 92. https://doi.org/10.3390/s22010092