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Abstract: The working principle of fiber Bragg grating (FBG) sensors is mostly based on
the tracking of the Bragg wavelength shift. To accomplish this task, different algorithms
have been proposed, from conventional maximum and centroid detection algorithms to more
recently-developed correlation-based techniques. Several studies regarding the performance
of these algorithms have been conducted, but they did not take into account spectral
distortions, which appear in many practical applications. This paper addresses this issue
and analyzes the performance of four different wavelength tracking algorithms (maximum
detection, centroid detection, cross-correlation and fast phase-correlation) when applied to
distorted FBG spectra used for measuring dynamic loads. Both simulations and experiments
are used for the analyses. The dynamic behavior of distorted FBG spectra is simulated using
the transfer-matrix approach, and the amount of distortion of the spectra is quantified using
dedicated distortion indices. The algorithms are compared in terms of achievable precision
and accuracy. To corroborate the simulation results, experiments were conducted using three
FBG sensors glued on a steel plate and subjected to a combination of transverse force and
vibration loads. The analysis of the results showed that the fast phase-correlation algorithm

guarantees the best combination of versatility, precision and accuracy.
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1. Introduction

Fiber Bragg grating (FBG) sensors can be dated back to 1978, when Hill ef al. [1] discovered that
refractive index variation (i.e., gratings) can be formed in optical fibers. Since then, the interest in
the fabrication and application of FBG sensors has exponentially grown [2,3]. Today, FBG sensors
are adopted for probing a variety of measurands, such as strain, temperature, pressure, erosion and
even magnetic fields [3,4]. Compared to conventional electrical sensors, FBG sensors offer a number
of attractive advantages. First, they are immune to electromagnetic interference. Second, they
can be integrated within materials in a minimally-intrusive manner thanks to their small size and
weight. Furthermore, chains of serially-connected FBGs can be straightforwardly multiplexed to enable
quasi-distributed measurements. These advantages led to the introduction of FBG sensors in many
applications [5,6]. FBG sensors use the so-called Bragg condition, according to which the Bragg
wavelength A of the light reflected by the grating obeys the following law:

AB = 2N A (1)

where n. is the effective refractive index of the fiber and A is the grating period. The wavelength of
the reflected light (the Bragg wavelength) is sensitive to the magnitude of the measurand at the sensor
location. Therefore, it is possible to retrieve information about the measurand by tracking the Bragg
wavelength shifts. To accomplish this task, many interrogation schemes have been developed in the last
few years [7,8]. At the same time, several peak detection algorithms have been proposed in the literature,
from conventional techniques, such as the maximum detection (MD) and centroid detection (CD)
algorithms, to more recent and advanced neural network [9] methods and correlation-based techniques,
such as the auto- and cross-correlation algorithms (AC, CC) [10,11] and the fast phase-correlation
algorithm (FPC) [12,13]. Many studies exist in the literature concerning the accuracy and precision
performance of these algorithms [12—-14], although most of these studies concentrate mainly on spectral
shifts due to uniform strain loads. External loads, however, can also lead to non-uniform strain field
distributions along the sensor grating. When this happens, the original FBG reflected spectrum becomes
distorted and shows multiple peaks, as well as more or less pronounced side lobes. In some cases,
the spectrum distortion can be used to identify the strain distribution over the sensor [9,15,16], but
most often, the distortion is considered as a source of error in the interrogation process. Spectral
distortion is crucial for many practical applications. In FBG sensors embedded in composite materials,
for example, the amount of spectrum distortion can be quite severe. In this case, the distortion level
depends on different factors, such as the size of the FBG and the relative orientation between the FBG
sensor and the composite fibers, although most of the spectral distortion arises during the cooling
stageof the curing process, when birefringence effects occur because of thermal shrinkage [17-19].
Distortion can also be associated with the presence of structural damage, such as debonding, cracks

and delaminations [20-22]. However, spectral distortion is not limited to embedded sensors and has
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been observed also in surface-mounted sensors. Suaréz et al. [23] experienced spectral distortion,
while using surface-mounted FBGs to measure transient and residual strains during a welding process.
De Pauw et al. [24] showed peak broadening and distortion in FBG sensors glued on the surface of a
nuclear fuel pin and exposed to conditions similar to those encountered in a heavy liquid metal reactor.

The impacts of FBG spectral deformation on the interrogation performance has been investigated a
few times. These studies can be grouped into two main categories: the first focusing on the reconstruction
of the non-uniform strain field in static or quasi-static condition [16,25] using neural networks and
genetic algorithms; the second dealing with the development of new types of interrogator systems with
higher performance in terms of accuracy and interrogation speed [26,27]. However, to the best of our
knowledge, no study has been conducted so far to evaluate the performances of different peak detection
algorithms when dealing with distorted spectra and dynamic external loads. In 2013, Webb et al. [27]
performed dynamical strain measurements of embedded FBG sensors using a fast interrogator with full
spectrum acquisition. In that case, however, the centroid (CD) was the only algorithm used to process
the acquired deformed spectra and to calculate the dynamic average strain.

In this paper, we present a survey on the performance of four peak detection techniques, MD, CD,
CC and FPC, when applied to dynamic measurements of distorted FBG spectra. It must be noticed
that each of these demodulation algorithms can be selected independently from the type of spectral
interrogator used. We compare the performance on the basis of both simulated and experimental data.
The transfer-matrix method [28] is used to simulate the behavior of a single-mode FBG sensor subjected
to 300 different scenarios of non-uniform strain field distributions along the sensor axis. For each
simulation, we evaluate the amount and type of distortion using two indices: the full width at half
maximum (FWHM) and the unbalance (UNB). These indices, which are defined in Section 3.2, provide
information on the peak broadening, on the intensity reduction and on the asymmetry of the spectrum.

For the experimental analysis, we have mounted three FBG sensors with different FWHM and UNB
indices on the surface of a steel plate. In order to introduce distortion, we applied a non-uniform
transverse load to the gratings by means of a second smaller plate bolted on top of the sensors. By
increasing the tightness of the bolts in 10 consecutive steps, we were able to induce 11 different amounts
of spectral deformation. Between two consecutive steps, we performed vibration measurements using
a shaker and a full-spectrum interrogation routine, and we compared the SNR levels obtained with the
four demodulation algorithms. We conclude on the achievable signal to noise ratio (SNR) and accuracy
of the different interrogation algorithms.

The paper is further structured as follows. Section 2 recalls the principles of the detection algorithms
compared in our study. Section 3 presents the transfer-matrix method and summarizes the simulation
results, while Section 4 deals with the experimental measurements. Finally, Section 5 contains our

concluding remarks.

2. Demodulation Algorithms

As mentioned in the Introduction, when broadband light encounters a FBG sensor, part of its spectrum
at a specific wavelength is reflected. This wavelength is called the Bragg wavelength A, which depends

on the effective index neg of the fiber and on the grating period A. An external strain field applied to
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the sensor modifies both n.i and A and, therefore, affects the reflection spectrum. If this strain field is
uniform, then the FBG reflection spectrum only shifts in the amount proportional to the applied strain
(assuming isothermal conditions). However, when the strain is non-uniform, the spectrum shifts and
distorts [18,21,23,27,29] at the same time. By tracking the changes occurring in the reflection spectrum,
the strain distribution can be retrieved. To accomplish this task, many demodulation schemes have
been developed. Some of these algorithms simply detect shifts of the Bragg wavelength, while other
techniques also take into account the shape of the reflection spectrum. In this paper, we compare the
performance of four of these algorithms when they have to deal with distorted spectra and dynamic load
measurements. The algorithms that we have selected are the maximum detection (MD) algorithm, the
centroid detection (CD) algorithm, the cross-correlation (CC) algorithm and the fast phase-correlation
(FPC) technique. The following subsections recall the working principle of each of these algorithms.

2.1. Maximum Detection Algorithm

The maximum detection algorithm searches for the wavelength corresponding to the maximum power
in the reflection spectrum. It is a pure peak detection algorithm in the sense that it does not take into
account the shape of the spectrum. Compared to other methods, the MD algorithm is more sensitive to
noise and provides lower levels of accuracy and precision [12,14]. Even if it is easy to implement, it
is not the fastest algorithm, especially when used in combination with additional routines that provide
sub-wavelength resolution. The MD used in this paper computes the wavelength of maximum reflectivity
using the following equation:

Amaz = arg mimx{pR()\)} (2)

where A is the wavelength and PR(\) indicates the spectrum obtained with a p point quadratic
interpolation around the peak wavelength of the original reflection spectrum R(\). Note that the
benefit introduced by the sub-interpolation almost vanishes for values of p that are too low (not enough
interpolation points) or too high (too many interpolation points far from the maximum location and
corresponding to lower values of reflected power). In this paper, we assumed p = 7 as a good
trade-off value.

2.2. Centroid Detection Algorithm

The centroid detection algorithm computes the wavelength ). corresponding to the geometrical
centroid of the reflection spectrum by means of the following equation:

~ XA ROY)
N Zj:l (])

where R(),) is the intensity of the reflection spectrum at the jth wavelength position \;. The summation

3)

C

can be extended to the entire reflection spectrum or limited to part of the measured spectrum. In the first
case, () = N, where N is the total number of sampling points; in the second case, () < NN. This last case
(Q < N) has to be preferred when dealing with almost undistorted spectra with a narrow peak region.

Since, in this paper, we focused on spectra with different amounts of distortion, we assumed () = N.
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2.3. Cross-Correlation Algorithm

Another scheme for demodulating of FBG reflection spectra uses the cross-correlation algorithm [11].
In this algorithm, the wavelength shift A\ between two reflection spectra R(\) and R'(\) = R(A+AN)
is computed by tracking the peak of the Gaussian distribution obtained by cross-correlating the two
spectra. In this paper, the value of A\ is calculated by implementing the following equation:

AN = arg m}z\aux{?fl[R()\) x R'(\)]} 4)
where the symbol * indicates the cross-correlation product and F~! is the inverse Fourier transform.

2.4. Fast Phase-Correlation Algorithm

The fast phase-correlation has been recently proposed in the literature [12]. Given two spectra R(\)
and R'(\) = R(A+ A\), the FPC computes the shift A\ by means of the following equation:

(&)

AX = median ((Ziﬁ'(k)—lfﬁ(k)) o

2<k<M

NkéA)

where R (k) and JR/(k) are the Fourier transforms of R(\) and R'(A) = R(A + AM), respectively, k
is the generic Fourier spectral line, M is the maximum number of Fourier spectral lines considered in
the analysis, the symbol £ indicates the phase of the complex number and N is the number of samples
used for each spectrum. The value of M can be much lower than N without considerably affecting the
algorithm performance. In this article, we assumed M = 15 as a good trade-off between execution speed

and algorithm accuracy and precision.

3. Simulations and Performance Analysis

To analyze the performance of the demodulation algorithms introduced in the previous section, we
carried out simulations using the commercially available software, MATLAB®[30] (The Mathworks,
Natick, MA, USA). Subsection 3.1 introduces the transfer-matrix [28] method used to calculate the FBG
spectral response as implemented in MATLAB, and Subsection 3.2 illustrates the methodology adopted
to process the simulated data and to compare the performance of the different techniques.

3.1. Simulation of FBG Distorted Spectra under Steady-State Vibration

To simulate the desired dynamic behavior of distorted FBG spectra, we adopted the transfer-matrix
method. In this approach, the grating is divided into short periodic segments, each characterized by
a transfer-matrix based on the coupled-mode theory [28]. The characteristics of entire grating are
obtained by multiplying the transfer-matrices of all of the short segments. Assuming a grating of length
L subdivided into m periodic segments, the transfer matrix formulation can be computed as:

r-L)]
S<—L/2>] - 17~

R(L/2)

S(L/2) ©
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where R and S are, respectively, the amplitudes of the reflected and transmitted modes in the FBG axial
direction z, while 7. is the rth transfer matrix. The components of 7. are calculated from the following
set of equations [28,29]:

T cosh(aAz) — i sinh(aAz) —ikee sinh(aAz) o
T i%ae sinh (oA z) cosh(aAz) — i%e sinh(aAz2)
RN ®
1 1 2m
ki = 2mnes <X — E) + T5neff )
T
kac = X v 5neff (10

where Az is the length of each segment, k,. and k. are, respectively, the “dc” and “ac” self-coupling
coefficients, . is the effective index modulation, dn. is the “dc” index change spatially averaged over
a grating period Ag, A\p = 2n.iAg is the design Bragg wavelength and v is the fringe visibility. The
relation between the wavelength \p and the normal strain distribution €., along the z-axis is:

Ap(2,t) = 2neglo [1 + a €..(2, 1)] (11)

where a = 1 — %neff [p12 — v (p11 — p12)] is the grating gauge factor [29,31], in which p;; and p;, are
the components of the fiber-optic strain tensor and v is Poisson’s ratio. To account for the dynamic and
non-uniform nature of the applied strain, we use the following function:

€.2(2,1) = Coz + Cy 2° + Oy sin(27 f,t) (12)

where C, C' and C), are constant coefficients, f, is the frequency and ¢ indicates the time. The term
Co z + C4 2 produces the distortion of the FBG spectra, while the term C, sin(27 f,t) introduces
sinusoidal spectral shifting. In particular, the linear term () z is responsible for spectral broadening,

while the quadratic term C 22

induces asymmetric distortion [14]. Such a strain field guarantees
that the spectral distortion is constant during the vibration. This assumption holds in many practical
situations, as shown in [27]. The case of dynamically changing spectral distortions is not analyzed in
this paper. We used the above-described procedure to simulate the behavior of an FBG with L = 1072 m,
Ay = 1075 m, ngy = 1.452, 0neg = 1.131 x 1074, v = 1, p;; = 0.121, p1 = 0.270, v = 0.17. The
design Bragg wavelength of the grating in a strain-free state is 1540.02 nm. The wavelength range
Amaz — Amin considered in the analysis was 6 nm, the resolution A = 80 pm and the total number
of sampling points N = 75. Such a parameter selection was made in order to achieve a wavelength
resolution almost identical to that of the device that will be used in Section 4 for the experimental
analyses. A total of 300 different strain scenarios were simulated by changing the coefficients Cy, C
and C, in Equation (12), as shown in Figure 1. We simulated a sinusoidal vibration at a frequency
fo = 10 Hz for a time period of 1 s and using a time step of 0.001 s. For every scenario, the MATLAB
script calculates the value of \p at each time instant using Equation (11) and then refreshes the value
of k4. needed for the computation of the reflectivity according to Equation (6). The amplitude of the
sinusoidal shift of the design Bragg wavelength depends exclusively on the C; coefficient: the higher C5,
the higher the amplitude of AAp (). In particular, the amplitude of AXp(¢) achieved with the selected
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simulation parameters was 70.25 pm for the first 100 scenarios, 7.02 pm for the second 100 scenarios and
140.51 pm for the last 100 simulations.

Figure 1. C,,C, (a) and C5 (b) coefficients and distorted spectra (c¢) as a function of
the simulated scenarios. (a) C,, (' coefficients. The C| coefficient varies from zero to
0.3 p1e/m, while C goes from zero to 19 pe/m?. Both Cyy and C| repeat identically every 100
scenarios; (b) C, coefficient. The C, coefficient varies from 5x 10~ e (Scenarios 1-100) to
5 x 107 pe (Scenarios 101-200) and 10~ pe (Scenarios 201-300); (¢) Three distorted
spectra scenarios illustrate the different amounts of peak broadening and asymmetry.
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3.2. Processing of Simulation Data and Performance Analysis

The procedure adopted to process the spectra corresponding with each simulated scenario is
schematically illustrated in Figure 2. Since no additional distortion occurs during the vibration of the
spectra, the type of distortion can be preliminary estimated using the following two metrics:

FWHM = ), — ), (13)
UNB = [(A\,—Ap)— (Ap = Ao)| =Xy —2Ap — A (14)

where FWHM is the full width at half maximum and UNB is defined here as the unbalance index. Ap
is the design peak wavelength, while )\, and ), are the wavelengths for which the peak power is halved.
The FWHM provides information about the spectral width of the peak region, while the UNB measures

the amount of spectral asymmetry. Both metrics depend on the selected Cjy and C (Figure 1a). Since C)
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and (' repeat identically every 100 scenarios, the FWHM and UNB values repeat in the same way. This
means that a total of 100 different couples (FWHM, UNB) were simulated, with the FWHM varying
between 0.29 and 3.25 pm and the UNB between 0.0072 and 1.95 pm.

Figure 2. Methodology adopted to process the simulated spectra and to evaluate the
performance of the demodulation algorithms.

t(sec)

Rmax
FWHM = Ap-Ao

UNB = (Ap-AD) - (AD-A0)
Rmax/2
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| FFT FFT
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AGWHM , UNB) = A2,/ = £) =~ max (M, )

Once the FWHM and UNB indices have been computed, a parallel computational process begins.
The first process involves the calculation of the theoretical shift of the design wavelength through
Equation (11). The obtained A\p is a function of time and the selected FWHM and UNB. The second
process deals with the estimation of the wavelength shifts via the different demodulation algorithm
presented in Section 2. First, the simulated spectra are corrupted with white Gaussian noise (AWGN)
with a selected SNR value of 40 dB. Then, each demodulation algorithm provides an estimated function
AXpey(t, FWHM, UNB), which is successively processed by the FFT algorithm to obtained the
wavelength AA\pgy(f, FWHM, UNB) shift in the frequency domain. To estimate the accuracy of
the demodulation algorithm, the amplitude of the computed AXpgy/(f, FWHM, UNB) is eventually
compared with the amplitude of the theoretically-calculated AAp(f, FWHM, UNB). At the same time,
the dynamic SNR is obtained from the difference between the peak amplitude of AApgy/(f, FWHM,
UNB) and its noise floor. Accuracy A(FWHM, UNB) and SNR(FWHM, UNB) were computed with the

following equations:
A (FWHM, UNB) = |AXp( f,, FWHM, UNB),; — mfax [AXpeuv(f, FWHM, UNB), ;| (15)

SNR (FWHM, UNB) = AApga( f., FWHM, UNB),; — max [AApea(f, FWHM, UNB),;]  (16)

where [ indicates the frequency, f, is the frequency of the assumed sinusoidal strain wave
(Equation (12)) and the subscript dB indicates the decibels. According to these definitions, low values
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of A combined with high SNR levels indicate better performance. Note that Equation (15) calculates
the accuracy A as a difference of dB values. From the computed A values, the ratio between A\p and
AMpg can be retrieved with the following equation:

Alp A
— 103 (17)
A>\DEM

Figure 3 shows the obtained SNR levels as a function of the indices FWHM and UNB. The
SNR of the MD algorithm is taken as the reference. The first observation is that the SNR of the
MD is not always positive, but returns negative values for some couples of (FHWM, UNB) values.
From the numerical point of view, this happens because the amplitude of the FFT signal obtained
via the MD algorithm lies within the noise floor. In practice, this means that for some simulated
scenarios, the MD completely fails in following the dynamical shift of the spectra. In particular,
the probability of failing is higher when the FWHM increases beyond 1.43 pm. The other three
algorithms always produce positive SNR levels. The CD and FPC techniques allow one to achieve
the highest values of SNR. The SNR¢p is higher than the SNRyp in 90.3% of the cases. The
differences SNRcc — SNRyp and SNRgpe — SNRyp are positive, respectively, for 45.1% and 98.3%
of the simulated scenarios. The MD can produce better SNR than CD and CC for FWHM < 1.65 nm
and UNB < 0.81 nm. Table 1 reports the maxima and minima SNR values obtained by each
demodulation algorithm during the complete set of simulations. The FPC has the highest values of
both minimum and maximum SNR. The CD and CC algorithms guarantee almost the same minimum
achievable SNR level, which is slightly above 11.5 dB. Table 1 also reports the percentage of cases for
which the CD, CC and FPC algorithms produce SNR levels higher than the MD. Figure 4 compares
the performance of the different algorithms considering how the SNR changes as a function of the
simulated scenario.

Figure 3. Performance evaluation of the demodulation algorithms in terms of SNR. The
maximum detection (MD) algorithm is taken as reference (upper-right, bottom). For
FWHM > 1.43, the probability of failure of the MD algorithm increases. The influence
of the asymmetry (unbalance, UNB) on the achievable SNR is limited compared to that of
the peak broadening (FWHM).
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Table 1. Maxima and minima SNR levels obtained by each demodulation technique for the
300 simulated scenarios (Rows 1 and 2). The centroid detection (CD) and the fast phase
correlation (FPC) yield a higher SNR for more than 90% of the simulated scenarios, while
the cross-correlation (CC) performs better than maxium detection (MD) only for 45.1% of

the cases.

MD CD CC FPC

SNR,,, (dB) 4459 51.80 4275 56.33
SNR,;, (dB) 1648 11.63 1242 18.92
#(SNRopm —SNRMp>0) (g7 0 903 45.1 98.3
300 . . .

Figure 4. Comparison of the performance based on the variation of the obtained SNRs
with the number of simulated scenarios. The SNR levels of CD, CC and FPC are compared
with those of the MD algoritm (upper-row) and among each other (bottom-row). The
CC performs better for low-amplitude vibrations (Scenarios 101-200; AXp = 7.02 pm in
upper-center, bottom-center, bottom-right). In all other cases, the FPC produces better
results than the other algorithms.
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We note that:

- CC is the method that performs better in the scenario interval from 101 to 200. In this interval,
the C5 coefficient is minimum (Figure 1b), as well as the amplitude of the design wavelength shift
(AXp =7.02 pm). This suggests that for practical applications involving low-amplitude vibrations,
the CC will likely produce signals with better SNR than other techniques.

- The FPC and the CD have SNR levels higher than the CC when the vibration amplitude increases
(scenarios from 1 to 100 and from 201 to 300). The FPC can give SNR levels up to 30 dB higher
than the CC.

- The difference  SNRgpc — SNRcp is always positive for low-amplitude vibrations
(Scenario 101-200; AAp = 7.02 pm) and reaches the maximum value of 22.84 dB. When
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the wavelength shift increases (scenarios from 1 to 100 and from 201 to 300), the FPC continues
to give better results than the CD for 65% of the cases (130 scenarios out of 200). The 86% of the
cases for which SNR¢p is higher than SNRpgpc is related to almost undistorted spectra with values
of FWHM and UNB lower than 0.25 and 0.09 nm, respectively.

Figures 5-8 show the accuracy of the four algorithms as a function of the FWHM and UNB indices
and the simulated scenarios. Figure 5 refers to the MD accuracy performance. The red crosses indicate
scenarios for which the SNRyp of Figure 3 is negative. We note that the MD accuracy decreases
considerably when the FWHM and the UNB increase. In particular, the worst accuracy occurs at
FWHM = 2.48 nm and UNB = 1.63 nm and C; = 5 x 10754 e. Although this case corresponds to a
2Ap_ — 18 indicates that the MD demodulation of the wavelength shift fails.

AXMp
In fact, rather than detecting a sinusoidal AAp(¢) of amplitude 7.02 pm, it provides an amplitude of

positive SNRyp, the ratio

0.39 pm. Statistically, the major number of failures in terms of both SNR and accuracy occurs for
FWHM and UNB, respectively, above 1.43 and 0.87 nm.

Figure 5. Accuracy of the maximum detection (MD) algorithm as a function of the indices,
FWHM and UNB (left), and simulated scenarios (center). The ratio A’]\\fD as a function

AX
of the simulated scenarios (right). The red crosses indicate the scenarios for which the
SNRMD < 0.
0 ) 18 %
<
o) g S7 &
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Figure 6. Accuracy of the CD algorithm as a function of the indices FWHM and

UNB (left) and simulated scenarios (center). The ratio % as a function of the simulated

scenarios (right).
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The accuracy of the CD technique (Figure 6) shows low variation with both FWHM and UNB. In

59% of the simulated scenarios, the CD accuracy error is lower than 20% ( AAAACDD < 1.2). If we consider

low-amplitude vibrations (Scenarios 101-200), the percentage increases from 59% to 85%. The CD is

always more accurate than the CC (Figures 6 and 7), while it is less accurate than the FPC (Figures 7
and 8) in 260 of the 300 simulated scenarios (86.67%). Particularly, for Cy, > 5 x 107%y € (Scenarios
1-101 and 201-300), the FPC accuracy is always better (i.e., lower) than the CD. The ratio Aﬁ;gc is
lower than 1.2 for 89% of the cases and lower than 1.05 for 72% of the cases. The effect of FHWM and

UNB on the FPC accuracy is limited.

Figure 7. Accuracy of the CC algorithm as a function of the indices FWHM and

UNB (left) and simulated scenarios (center). The ratio AA/\’\ODC as a function of the simulated

scenarios (right).
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Figure 8. Accuracy of the FPC algorithm as a function of the indices FWHM and

UNB (left) and simulated scenarios (center). The ratio Aﬁigc as a function of the simulated

scenarios (right).
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4. Experimental Results and Discussion

To validate the simulated results obtained in Section 3, we carried out a performance analysis on the
basis of experimental data. To compare the performance of the four demodulation algorithms for several
experimental conditions corresponding to different FWHM and UNB values, we designed with the setup
described in Figure 9a. Three FBGs (FBG1, FBG2, FBG3) with Bragg wavelengths 1529.62 nm (FBG1),
1539.55 nm (FBG2) and 1559.41 nm (FBG3) are used. They have grating length L = 1072 m and initial
FWHM of 0.7843 nm (FBG1), 0.3923 nm (FBG2) and 0.3921 nm (FBG3). The FBGs are glued to the
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surface of a steel plate (Plate A in Figure 9a) with dimensions of 21 cm X 19 cm x 0.1 cm. The plate is
clamped along one of its shorter edges and attached to a shaker at the opposite edge. In order to produce
distorted spectra with several FWHM and UNB indices, a second smaller plate (Plate B in Figure 9a)
of dimensions of 5 cm X 3 cm X 0.1 cm is mounted on top of the sensors and fixed to the main plate
with bolts (magenta cylinders in Figure 9a). A rubber material is included between the gratings and
Plate A. This material has two tasks: it protects the fibers, and at the same time, it induces a distortion of
the spectrum. When the bolts are tightened, the tooth profile of the rubber material section (Figure 9a,
upper left) applies a non-uniform transverse load to the gratings. As a consequence, the original FBG
spectra distort: the original peak regions become broader, and multiple peaks arise due to birefringence
effects [32,33]. Figure 9b explains the experimental procedure used to analyze the algorithm
performance. First, a reference transverse load is selected by arbitrarily choosing an initial level of
bolt tightness. Then, a sinusoidal wave of amplitude 4 V and frequency 7 Hz is generated in MATLAB,
amplified and sent to the the shaker through an NI USB-6341 data acquisition card [34]. The vibrating
spectra of each FBG sensor are multiplexed in one broader spectrum and recorded using a commercially
available FBGS FBG scan 700 [35] interrogator (wavelength range 1525-1565 nm and resolution
78 pm) in combination with an in-house developed LabVIEW [36] code. Three wavelength windows of a
bandwidth of 7 nm are then applied to the recorded data. The first window is centered around the original
Bragg wavelength of FBG1 (1529.62 nm); the second and the third windows are centered, respectively,
around 1539.55 nm (Ap of FBG2) and 1559.41 nm (Ag of FBG3). In this way, the spectral vibration
associated with each FBG is retrieved and processed using the MD, CD, CC and FPC algorithms. The
SNR levels are eventually computed from the FFT of the calculated wavelength shifts AX. Once the
SNR values are stored, the tightness of the bolt is manually increased, and a new transverse load case
corresponding to spectra with different FWHM and UNB is generated. The vibration measurements are
then repeated and the new SNR levels computed. In this paper, we analyzed 11 different load cases
(including the reference load condition). Figure 10 shows a comparison between the original (Load
Case 1 = the reference) spectrum obtained by multiplexing the three FBG reflected spectra and the
equivalent spectrum corresponding to Load Case 10. The variation of the FWHM and UNB indices of
each sensor as a function of the load case is reported in Figure 11. It is worth noticing that, in this
procedure, no sensor was adopted to measure the applied transverse load. At the same time, the load
was manually increased since uniform load distributions were not required. Highly non-uniform load
conditions worked better for our purposes, because they induced more spectral distortion. Figure 12
shows the experimental SNR levels obtained by the different demodulation algorithms. The MD is taken
as the reference. Figure 13 shows for each of the three FBG sensors the evolution of the SNR levels
obtained with the four demodulation algorithms together with the evolution of maximum reflectivity.
Overall, the results are in good agreement with the simulated SNR levels in Figure 3.

In particular, we note that:

- The MD algorithm produces SNR levels that are always positive. This is due to the fact that the
maximum FWHM (1.41 nm) obtained from the experiments is below the critical value 1.43 nm,
above which, according to simulations, the MD algorithm starts to fail.
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- The SNR of the CD is generally worse than the SNR of the MD. This is in accordance with the
simulations (Figure 3; Scenarios 101-200 in Figure 4) and is due to the limited values of FWHM,
UNB and wavelength shift (A)\,.x = 4.75 pm) achieved in experiments.

- CC and FPC perform better than MD and CD. The levels of SNRcc — SNRyp and
SNRgpc —SNRyp in Figure 12 are very similar to those reported in Figure 3 for FWHM < 1.41 nm
and UNB < 1.09 nm.

- The CC algorithm performs better than the FPC, with SNR values from 1.4 to 9.8 dB higher. This
is in accordance with what we saw in our simulations, where the CC worked better than the FPC
for spectral vibrations with an amplitude below 7.02 pm (Scenarios 101-200 in Figure 4).

- The variability of the SNR levels as a function of the reduced maximum reflectivity is higher for
the MD algorithm rather than for CD, CC and FPC. The CC and the FPC produce SNR levels that

are always higher than 30 dB, independent of the maximum reflectivity values.

Figure 9. Experimental setup (a) and procedure (b) used to compare the performance of the
different algorithms in terms of the achieved SNR. (a) Experimental setup; (b) Schematic

diagram of the experimental procedure.
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Figure 10. Normalized reflectivity of fiber Bragg grating 1 (FBGI1) (1529.62 nm), FBG2
(1539.55 nm) and FBG3 (1559.41 nm) for two different transverse load conditions. Spectral
distortion occurs when the load increases from the reference condition (black curve) to Load

Case 10 (red curve).
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Figure 11. FWHM (left) and UNB (right) indices vs. load case for FBGI (circle), FBG2

(square) and FBG3 (triangle). The maximum FWHM obtained is 1.41 nm.
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Figure 12. Performance evaluation of the demodulation algorithms based on experimental
SNR levels. The maximum detection (MD) algorithm is taken as reference (upper-right,

bottom). The FPC (bottom-right) performs better than the other algorithms.
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Figure 13. SNR levels (top) and maximum reflectivities (bottom) variations as a function
of the load case. (a) FBG1; (b) FBG2; (¢c) FBG3.
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It is worth noticing that a one-by-one comparison between simulation and measurements is not
possible for several reasons. First of all, the simulated strain functions do not match the applied
strain used for the measurements exactly. In fact, in the simulation, a longitudinal strain function is
assumed, while in the measurements, a transverse load is applied. Therefore, in the experiments, the
birefringence effect is much more pronounced than in the simulation and affects with a different weight
the SNR levels. Secondly, the amplitude of the vibration achieved during the experiments does not
exactly coincide with either of the three simulated amplitude levels (C5 coefficients in Figure 1b). The
amplitude of the excitation plays an important role in terms of the SNR performances of the different
analyzed algorithms. The peak locking effect [12], for instance, depends on the vibration amplitude (i.e.,
wavelength shift) once the wavelength resolution is fixed. Therefore, different wavelength shifts are
associated with different amount of performance degradation due to the peak locking effect. Moreover,
the noise levels used to corrupt the simulated FBG spectra are not selected to exactly represent the noise
incorporated in the measurements. In addition to what was already stated, it has to be mentioned that the
experimental set-up used in this paper was not conceived of to apply controllable loads in a repeatable
manner. It was rather conceived of in order to allow a fast and easy application of non-uniform loads.
Of course, as it is, the set-up allows one to repeat the measurements, although not with the same applied
transversal load. Statistically speaking, however, the experimental results are able to confirm the trends
identified by the simulations. In fact, even if there are additional influences on the achievable SNR levels,
because of birefringence, measurement noise and vibration amplitude, the performance of the algorithms
as a function of the spanned FWHM and UNB ranges follow the same trend showed by the simulations.
For a one-by-one comparison, a more sophisticated set-up could be prepared. At the same time, different
strain functions capable of better simulating the birefringence effect could be developed. Moreover,
additional distortion indices sensible to both asymmetry and the amount of birefringence could be used.
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5. Conclusions

In this paper, we presented a comparison of four demodulation algorithms for dynamical
measurements of distorted FBG spectra. These algorithms were the maximum detection (MD),
the centroid detection (CD), the cross-correlation (CC) and fast phase-correlation (FPC). Using the
transfer-matrix method, we first simulated the dynamical behavior of spectra with different levels of
distortion. To classify the amount and type of distortion, we used the full width at half maximum
(FWHM) and the unbalance (UNB) indices. These two indices provided information about the broadness
of the peak region and about the amount of spectral asymmetry, respectively. The performance of the
algorithms was evaluated in terms of accuracy and SNR. We also carried out experimental measurements
to validate our simulations. Our results show that:

- The maximum detection algorithm is the most sensitive to distortion. More particularly, the
probability that this algorithm fails at retrieving the actual wavelength shifts increases for values
of FWHM >1.43 nm.

- The fast phase-correlation algorithm yields the best combination of high SNR and accuracy.

- The fast phase-correlation and centroid detection algorithms are the most accurate, but the fast
phase-correlation produces higher SNR levels and works better when the amount of spectral
distortion increases and the vibration amplitude decreases (i.e., when A\ is low).

- The cross-correlation technique has the highest performance in terms of SNR for low-amplitude
vibrations (i.e., low wavelength shifts A\).

- The symmetric distortion (FWHM) associated with peak broadening and intensity reduction affects

the performance of the algorithms more than the asymmetric distortion (UNB).

Note that the performance analysis presented in this paper assumes that a number of model parameters
remain fixed, such as the wavelength bandwidth, the number of points used for interpolation in
Equation (2) and the values of Q and M in Equations (3)—(5). A different selection of these parameters
could lead to changes in the performance. In particular, according to our experience, the MD is
very sensitive to both the wavelength bandwidth and the number of points used for sub-wavelength
interpolation. The CD algorithm is also sensitive to wavelength bandwidth, although less than the MD.
In addition, the CD performance can considerably change when a different number of points Q is used to
compute the centroid of the reflection spectrum. On the other hand, the changes in the FPC performance
due to a different selection of M (the number of Fourier spectral lines) are moderate. Moreover, the
FPC, as well as the CC algorithms have low sensitivity to wavelength bandwidth. These considerations
demonstrate that correlation-based algorithms are more versatile than conventional techniques, although
not necessarily more accurate. This paper has shown that the FPC is the algorithm that guarantees the
best combination of versatility, precision and accuracy.
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