A Temperature Independent Inclinometer Based on a Tapered Fiber Bragg Grating in a Fiber Ring Laser
Abstract
1. Introduction
2. Sensor Setup and Principle
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, B.; Feng, P.; Mi, D.L.; Ren, Y.; Yang, F.; Zhao, Q.H. A Gyro-Based Inclinometer for Oil and Gas Well Logging. Appl. Mech. Mater. 2012, 152–154, 889–893. [Google Scholar] [CrossRef]
- Li, S.; Peng, X. Safety monitoring of underground steel pipeline subjected to soil deformation using wireless inclinometers. J. Civ. Struct. Health Monit. 2016, 6, 739–749. [Google Scholar] [CrossRef]
- Klotz, T.; Pothier, R.; Walch, D.; Colombo, T. Prediction of the business jet Global 7500 wing deformed shape using fiber Bragg gratings and neural network. Results Eng. 2021, 9, 100190. [Google Scholar] [CrossRef]
- Ranganathan, N.; Patel, M.I.; Sathyamurthy, R. An intelligent system for failure detection and control in an autonomous underwater vehicle. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2001, 31, 762–767. [Google Scholar] [CrossRef]
- Júdice, P.B.; Teixeira, L.; Silva, A.M.; Sardinha, L.B. Accuracy of Actigraph inclinometer to classify free-living postures and motion in adults with overweight and obesity. J. Sports Sci. 2019, 37, 1708–1716. [Google Scholar] [CrossRef]
- Manaf, A.B.A.; Nakamura, K.; Matsumoto, Y. One-side-electrode-type fluid-based inclinometer combined with complementary metal oxide semiconductor circuitry. Sens. Mater 2007, 19, 417–434. [Google Scholar]
- Li, Z.; Durgin, F.H. Design, data, and theory regarding a digital hand inclinometer: A portable device for studying slant perception. Behav. Res. Methods 2011, 43, 363–371. [Google Scholar] [CrossRef][Green Version]
- Tariq, H.; Touati, F.; Al-Hitmi, M.A.E.; Crescini, D.; Ben Mnaouer, A.; Al-Hitmi, M.E. A Real-Time Early Warning Seismic Event Detection Algorithm Using Smart Geo-Spatial Bi-Axial Inclinometer Nodes for Industry 4.0 Applications. Appl. Sci. 2019, 9, 3650. [Google Scholar] [CrossRef]
- Ayala, F.; de Baranda, P.S.; Croix, M.D.S.; Santonja, F. Reproducibility and Concurrent Validity of Hip Joint Angle Test for Estimating Hamstring Flexibility in Recreationally Active Young Men. J. Strength Cond. Res. 2012, 26, 2372–2382. [Google Scholar] [CrossRef]
- Pei, H.; Jing, J.; Zhang, S. Experimental study on a new FBG-based and Terfenol-D inclinometer for slope displacement monitoring. Measurement 2020, 151, 151. [Google Scholar] [CrossRef]
- Zheng, D.; Cai, Z.; Floris, I.; Madrigal, J.; Pan, W.; Zou, X.; Sales, S. Temperature-insensitive optical tilt sensor based on a single eccentric-core fiber Bragg grating. Opt. Lett. 2019, 44, 5570–5573. [Google Scholar] [CrossRef]
- Kinjalk, K.; Kumar, A.; Gautam, A. High-Resolution FBG-Based Inclination Sensor Using Eigen Decomposition of Reflection Spectrum. IEEE Trans. Instrum. Meas. 2020, 69, 9124–9131. [Google Scholar] [CrossRef]
- Yan, Z.; Zheng, D.J.; Chen, Z.Y.; Liu, Y.T. Research on a novel inclinometer based on distributed optical fiber strain and conjugate beam method. Measurement 2020, 153, 107404. [Google Scholar]
- Guo, C.; Chen, D.; Shen, C.; Lu, Y.; Liu, H. Optical inclinometer based on a tilted fiber Bragg grating with a fused taper. Opt. Fiber Technol. 2015, 24, 30–33. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, W.; Geng, P.; Wang, L. A Mach–Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing. J. Opt. 2013, 16. [Google Scholar] [CrossRef]
- Hong, C.; Zhang, Y.; Abro, Z.A. A Fiber Bragg Grating–Based Inclinometer Fabricated Using 3-D Printing Method for Slope Monitoring. Geotech. Test. J. 2019, 43. [Google Scholar] [CrossRef]
- Cui, J.; Gunawardena, D.; Liu, Z.; Zhao, Z.; Tam, H.-Y. All-Fiber Two-Dimensional Inclinometer Based on Bragg Gratings Inscribed in a Seven-Core Multi-Core Fiber. J. Light. Technol. 2020, 38, 2516–2522. [Google Scholar] [CrossRef]
- Lee, C.L.; Zeng, R.C.; Yang, C.R.; Lin, C.F.; Ma, C.T.; Liu, W.F. Tapered Polymer Fiber Inclinometers. IEEE Photonics J. 2020, 12, 1. [Google Scholar] [CrossRef]
- Osuch, T.; Markowski, K.; Jędrzejewski, K. Temperature Independent Tapered Fiber Bragg Grating-Based Inclinometer. IEEE Photon Technol. Lett. 2015, 27, 2312–2315. [Google Scholar] [CrossRef]
- Cai, X.; Luo, J.; Fu, H.; Bu, Y.; Chen, N. Temperature measurement using a multi-wavelength fiber ring laser based on a hybrid gain medium and Sagnac interferometer. Opt. Express 2020, 28, 39933–39943. [Google Scholar] [CrossRef]
- Yang, F.; Wu, Y.J.; Shi, J.; Yang, K.; Xu, W.; Guo, C.J.; Bai, H.; Zhang, S.S.; Xu, D.G.; Fu, W.L.; et al. Curvature sensor based on fiber ring laser with Sagnac loop. Opt. Fiber Technol. 2020, 60, 102341. [Google Scholar] [CrossRef]
- Tian, J.; Hou, M.-J.; Jiang, Y.; Luo, H.; Tang, C.-Y. Fiber ring laser cavity for strain sensing via beat frequency demodulation. Opt. Commun. 2020, 476, 126326. [Google Scholar] [CrossRef]
- Zhang, Y.; Bu, X. Narrow linewidth erbium-doped fiber laser incorporating with photonic crystal fiber based Fabry–Pérot interferometer for temperature sensing applications. Optik 2020, 219, 165005. [Google Scholar] [CrossRef]
- Kuznetsov, P.I.; Sudas, D.P.; Savel’Ev, E.A. Formation of Fiber Tapers by Chemical Etching for Application in Fiber Sensors and Lasers. Instrum. Exp. Tech. 2020, 63, 516–521. [Google Scholar] [CrossRef]
- Arumona, A.E.; Garhwal, A.; Youplao, P.; Amiri, I.S.; Ray, K.; Punthawanunt, S.; Yupapin, P. Electron Cloud Spectroscopy Using Micro-Ring Fabry–Perot Sensor Embedded Gold Grating. IEEE Sens. J. 2020, 20, 10564–10571. [Google Scholar] [CrossRef]
- Ma, K.; Song, N.; Jin, J.; He, J.; Zio, E. Configuration Optimization in Miniature Interferometric Fiber-Optic Gyroscopes for Space Application. IEEE Sens. J. 2020, 20, 7107–7117. [Google Scholar] [CrossRef]
- Perez-Herrera, R.A.; Stancalie, A.; Cabezudo, P.; Sporea, D.; Neguţ, D.; Lopez-Amo, M. Gamma Radiation-Induced Effects over an Optical Fiber Laser: Towards New Sensing Applications. Sensors 2020, 20, 3017. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, Z.; Chen, N.K.; Han, H.; Liu, C.N.; Grattan, K.T.; Rahman, B.M.A.; Zhou, H.; Liaw, S.K.; Bai, C. Room-Temperature Power-Stabilized Narrow-Linewidth Tunable Erbium-Doped Fiber Ring Laser Based on Cascaded Mach-Zehnder Interferometers With Different Free Spectral Range for Strain Sensing. J. Light. Technol. 2020, 38, 1966–1974. [Google Scholar] [CrossRef]
- Martin-Vela, J.A.; Sierra-Hernandez, J.M.; Jauregui-Vazquez, D.; Estudillo-Ayala, J.M.; Hernandez-Garcia, J.C.; Reyes-Ayona, J.R.; Garcia-Mina, D.F.; Rojas-Laguna, R. Highly Sensitive Fiber Ring Laser Sensor for Curvature Using a Modal Interferometer. IEEE Sens. J. 2020, 20, 9864–9870. [Google Scholar] [CrossRef]
- Yang, S.; Xiang, Z.; Fu, H.; Wang, Y. Temperature sensing scheme based on fiber ring microwave photonic filter with erbium doped fiber amplification. Microw. Opt. Technol. Lett. 2019, 62, 1477–1482. [Google Scholar] [CrossRef]
- Madry, M.; Alwis, L.; Binetti, L.; Pajewski, L.; Beres-Pawlik, E. Simultaneous Measurement of Temperature and Relative Humidity Using a Dual-Wavelength Erbium-Doped Fiber Ring Laser Sensor. IEEE Sens. J. 2019, 19, 9215–9220. [Google Scholar] [CrossRef]
- Li, T.; Tan, Y.; Han, X.; Zheng, K.; Zhou, Z. Diaphragm Based Fiber Bragg Grating Acceleration Sensor with Temperature Compensation. Sensors 2017, 17, 218. [Google Scholar] [CrossRef]
- Leal-Junior, A.; Theodosiou, A.; Díaz, C.; Marques, C.; Pontes, M.J.; Kalli, K.; Frizera-Neto, A. Polymer Optical Fiber Bragg Gratings in CYTOP Fibers for Angle Measurement with Dynamic Compensation. Polymers 2018, 10, 674. [Google Scholar] [CrossRef]
- Marques, C.A.; Leal-Junior, A.G.; Min, R.; Domingues, M.; Leitao, C.; Antunes, P.; Ortega, B.; André, P. Advances on Polymer Optical Fiber Gratings Using a KrF Pulsed Laser System Operating at 248 nm. Fibers 2018, 6, 13. [Google Scholar] [CrossRef]
- Wang, J.; Huang, T.; Duan, F.; Cheng, Q.; Zhang, F.; Qu, X. Fast peak-tracking method for FBG reflection spectrum and nonlinear error compensation. Opt. Lett. 2020, 45, 451. [Google Scholar] [CrossRef]
- Ogawa, K.; Koyama, S.; Haseda, Y.; Fujita, K.; Ishizawa, H.; Fujimoto, K. Wireless, Portable Fiber Bragg Grating Interrogation System Employing Optical Edge Filter. Sensors 2019, 19, 3222. [Google Scholar] [CrossRef]
- Kim, K.-T.; Kang, J.-H.; Hwangbo, S.; Im, K.-G. In-line Variable Optical Attenuator Based on the Bending of the Tapered Single Mode Fiber. J. Opt. Soc. Korea 2009, 13, 349–353. [Google Scholar] [CrossRef]
- Marcuse, D. Curvature loss formula for optical fibers. J. Opt. Soc. Am. 1976, 66, 216–220. [Google Scholar] [CrossRef]
- Shao, L.-Y.; Albert, J. Compact fiber-optic vector inclinometer. Opt. Lett. 2010, 35, 1034–1036. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Qian, Z.; Yang, X.; Zhao, C.-L.; Dong, X. Optical Fiber Inclinometer Based on a Fiber Taper Cascading a Peanut-Shape Structure. IEEE Sens. J. 2015, 15, 3917–3920. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, X.; Chen, K.; Wang, E.; Yu, Z.; Yu, Q. A high-resolution dynamic fiber-optic inclinometer. Sens. Actuators A Phys. 2018, 283, 305–312. [Google Scholar] [CrossRef]
- Maheshwari, M.; Yang, Y.; Upadrashta, D.; Chaturvedi, T. A Rotation Independent In-Place Inclinometer/Tilt Sensor Based on Fiber Bragg Grating. IEEE Trans. Instrum. Meas. 2018, 68, 2943–2953. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, Z.-W.; Deng, Q.-X.; Xiao, F. Theoretical and experimental study on the fiber Bragg grating-based inclinometer for slope displacement monitoring. Opt. Fiber Technol. 2019, 49, 28–36. [Google Scholar] [CrossRef]
- Momosaki, R.; Kumar, A.; Kumar, N.; Ojha, N.S. Polarization induced non-reciprocal phase controlled all-fiber loop mirror based inclinometer. Opt. Laser Technol. 2019, 112, 134–139. [Google Scholar] [CrossRef]
- Xu, H.; Li, F.; Zhao, W.; Wang, S.; Du, Y.; Bian, C. A High Precision Fiber Bragg Grating Inclination Sensor for Slope Monitoring. J. Sens. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, D.; Shi, L. A new deflection solution and application of a fiber Bragg grating-based inclinometer for monitoring internal displacements in slopes. Meas. Sci. Technol. 2018, 29, 055008. [Google Scholar] [CrossRef]
- Zhuang, Y.; Chen, Y.; Zhu, C.; Gerald, R.E.; Huang, J. Probing changes in tilt angle with 20 nanoradian resolution using an extrinsic Fabry-Perot interferometer-based optical fiber inclinometer. Opt. Express 2018, 26, 2546–2558. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Zhao, C.-L.; Kang, J.; Dong, X.; Jin, S. Multiplex and simultaneous measurement of displacement and temperature using tapered fiber and fiber Bragg grating. Rev. Sci. Instrum. 2012, 83, 053109. [Google Scholar] [CrossRef]
Structures | Tilt Angle | References |
---|---|---|
Tilted fiber Bragg grating | −12–12° | [40] |
Tapered Polymer Fiber | −6–6° | [18] |
Peanut-Shape Structure | 0–6.66° | [41] |
Fiber Bragg Grating | 0–1° | [42] |
A couple of matched FBGs | −6° | [43] |
Cascaded FBG | / | [44] |
all-fiber loop mirror | −45–45° | [45] |
small size Fiber Bragg Grating | −3–3° | [46] |
fiber Bragg grating-based inclinometer | / | [47] |
extrinsic Fabry-Perot interferometer | 0–8° | [48] |
Current work | 0–90° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Zhou, S.; Shao, L.; Vai, M.I.; Shum, P.-P.; Xu, W.; Zhao, F.; Yu, F.; Liu, Y.; Liu, Y.; et al. A Temperature Independent Inclinometer Based on a Tapered Fiber Bragg Grating in a Fiber Ring Laser. Sensors 2021, 21, 2892. https://doi.org/10.3390/s21092892
Lin W, Zhou S, Shao L, Vai MI, Shum P-P, Xu W, Zhao F, Yu F, Liu Y, Liu Y, et al. A Temperature Independent Inclinometer Based on a Tapered Fiber Bragg Grating in a Fiber Ring Laser. Sensors. 2021; 21(9):2892. https://doi.org/10.3390/s21092892
Chicago/Turabian StyleLin, Weihao, Shengjie Zhou, Liyang Shao, Mang I. Vai, Perry-Ping Shum, Weijie Xu, Fang Zhao, Feihong Yu, Yibin Liu, Yuhui Liu, and et al. 2021. "A Temperature Independent Inclinometer Based on a Tapered Fiber Bragg Grating in a Fiber Ring Laser" Sensors 21, no. 9: 2892. https://doi.org/10.3390/s21092892
APA StyleLin, W., Zhou, S., Shao, L., Vai, M. I., Shum, P.-P., Xu, W., Zhao, F., Yu, F., Liu, Y., Liu, Y., & Liu, S. (2021). A Temperature Independent Inclinometer Based on a Tapered Fiber Bragg Grating in a Fiber Ring Laser. Sensors, 21(9), 2892. https://doi.org/10.3390/s21092892