Vibration-Sensing Electronic Yarns for the Monitoring of Hand Transmitted Vibrations †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vibration-Sensing E-Yarn Fabrication
2.2. Inducing and Recording Vibrations
2.3. Data Collection and Analysis
2.4. Vibration-Sensing E-Yarns Embedded within Fabrics
3. Results
3.1. Characterzation of the Vibration-Sensing E-Yarns
3.1.1. Vibration-Sensing E-Yarn Frequency Dependence
3.1.2. Vibration-Sensing E-Yarns Amplitude Dependence
3.1.3. Validating the Accuracy of the Vibration-Sensing E-Yarn Measurements
3.2. Constructing Vibration-Sensing E-Yarns Using a Knit Braided Outer Sheath
3.3. Characterisation of Vibration-Sensing E-Yarns Embedded within Fabrics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Experiments to Determine How to Attach the E-Yarn to the Vibration Stage
Appendix A.2. E-Yarn Facing Experiments
Direction | Vibration Amplitude (ms−2) | Sensor Response (ms−2) |
---|---|---|
Up | 10.09 ± 0.03 | 10.66 ± 0.03 |
Down | 10.14 ± 0.02 | 7.22 ± 0.01 |
Left | 9.82 ± 0.02 | 1.04 ± 0.15 |
Right | 10.18 ± 0.01 | 4.93 ± 0.51 |
Appendix A.3. Applied Voltage Experiments
References
- Rahemtulla, Z.; Hughes-Riley, T.; Dias, T. Developing a Vibration-Sensing Yarn for Monitoring Hand-Transmitted Vibrations. Proceedings 2019, 32, 6. [Google Scholar] [CrossRef] [Green Version]
- Griffin, M.J.; Bovenzi, M. The Diagnosis of Disorders Caused by Hand-Transmitted Vibration: Southampton Workshop 2000. Int. Arch. Occup. Environ. Health 2002, 75, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.J. Minimum Health and Safety Requirements for Workers Exposed to Hand-Transmitted Vibration and Whole-Body Vibration in the European Union; a Review. Occup. Environ. Med. 2004, 61, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Pyykkö, I.; Korhonen, O.; Färkkilä, M.; Starck, J.; Aatola, S.; Jäntti, V. Vibration Syndrome among Finnish Forest Workers, a Follow-up from 1972 to 1983. Scand. J. Work. Environ. Health 1986, 12, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Letz, R.; Cherniack, M.G.; Gerr, F.; Hershman, D.; Pace, P. A Cross Sectional Epidemiological Survey of Shipyard Workers Exposed to Hand-Arm Vibration. Br. J. Ind. Med. 1992, 49, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bovenzi, M. Exposure-Response Relationship in the Hand-Arm Vibration Syndrome: An Overview of Current Epidemiology Research. Int. Arch. Occup. Environ. Health 1998, 71, 509–519. [Google Scholar] [CrossRef]
- Virokannas, H. Dose-Response Relation between Exposure to Two Types of Hand-Arm Vibration and Sensorineural Perception of Vibration. Occup. Environ. Med. 1995, 52, 332–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virokannas, H. Vibration Perception Thresholds in Workers Exposed to Vibration. Int. Arch. Occup. Environ. Health 1992, 64, 377–382. [Google Scholar] [CrossRef]
- Miyashita, K.; Shiomi, S.; Itoh, N.; Kasamatsu, T.; Iwata, H. Epidemiological Study of Vibration Syndrome in Response to Total Hand-Tool Operating Time. Occup. Environ. Med. 1983, 40, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Hagberg, M.; Morgenstern, H.; Kelsh, M. Impact of Occupations and Job Tasks on the Prevalence of Carpal Tunnel Syndrome on JSTOR. Scand. J. Work. Environ. Health 1992, 18, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, T.; Hagberg, M.; Burström, L.; Kihlberg, S. Impaired Nerve Conduction in the Carpal Tunnel of Platers and Truck Assemblers Exposed to Hand-Arm Vibration. Scand. J. Work. Environ. Health 1994, 20, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, T.; Hagberg, M.; Burström, L.; Lundstörm, R. A five-year follow-up of nerve conduction over the carpul tunnel. In Hand-Arm Vibration Syndrome: Diagnostics and Quantitative Relationships to Exposure: Proceedings: Stockholm Workshop 94; Gemne, G., Ed.; Arbetsmiljöinstitutet: Solna, Sweden, 1995; pp. 117–120. ISBN 9170452962. [Google Scholar]
- Griffin, M.J. Measurement, Evaluation, and Assessment of Occupational Exposures to Hand-Transmitted Vibration. Occup. Environ. Med. 1997, 54, 73–89. [Google Scholar] [CrossRef] [Green Version]
- British Standards Institution. BS EN ISO 5349-1-Mechanical Vibration-Measurement and Evaluation of Human Exposure to Hand-Transmitted Vibration-Part 1: General Requirements; British Standards Institution: London, UK, 2001. [Google Scholar]
- British Standards Institution. BS EN ISO 8041:2005-Human Response To Vibration-Measuring Instrumentation; British Standards Institution: London, UK, 2005. [Google Scholar]
- HAVS Hand Arm Vibration & Workplace Social Distancing-Reactec. Available online: https://www.reactec.com/?gclid=Cj0KCQiA1KiBBhCcARIsAPWqoSonRNNpjG-xJn4fdg8DPGoPNwQa4jfjRGiC_gGaz2D4qUxGXt57WfoaAiZAEALw_wcB (accessed on 15 February 2021).
- HAVSco–HAV Dosimeters. Available online: https://havsco.co.uk/dosimeters/ (accessed on 16 February 2021).
- Hand Arm Vibration Meter PCE-HAV 100|PCE Instruments. Available online: https://www.pce-instruments.com/english/measuring-instruments/test-meters/vibration-meter-pce-instruments-hand-arm-vibration-meter-pce-hav-100-det_5932744.htm (accessed on 16 February 2021).
- Hand Arm Vibration(HAV)–CVK. Available online: https://www.cvk.se/products/hand-arm-vibrationhav/ (accessed on 16 February 2021).
- HealthVib HAV100-3Ch–CVK. Available online: https://www.cvk.se/products/hand-arm-vibrationhav/healthvib-hav100-3ch/ (accessed on 1 April 2021).
- Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes-Riley, T.; Dias, T.; Cork, C. A Historical Review of the Development of Electronic Textiles. Fibers 2018, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Q.; Tao, X. Sensing Mechanism of a Carbon Nanocomposite-Printed Fabric as a Strain Sensor. Compos. Part A Appl. Sci. Manuf. 2021, 144, 106350. [Google Scholar] [CrossRef]
- Jung, W.T.; Jeon, J.W.; Jang, H.S.; Kim, D.Y.; Lee, H.K.; Kim, B.H. Commercial Silk-Based Electronic Textiles for NO2 Sensing. Sens. Actuators B Chem. 2020, 307, 127596. [Google Scholar] [CrossRef]
- Shaker, K.; Umair, M.; Hamdani, S.T.A.; Nawab, Y. Effect of Fabric Structure on the Performance of 3D Woven Pressure Sensor. Fibers Polym. 2021, 22, 847–853. [Google Scholar] [CrossRef]
- Hughes-Riley, T.; Jobling, P.; Dias, T.; Faulkner, S.H. An Investigation of Temperature-Sensing Textiles for Temperature Monitoring during Sub-Maximal Cycling Trials. Text. Res. J. 2021, 91, 624–645. [Google Scholar] [CrossRef]
- Hughes-Riley, T.; Dias, T. Developing an Acoustic Sensing Yarn for Health Surveillance in a Military Setting. Sensors 2018, 18, 1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satharasinghe, A.; Hughes-Riley, T.; Dias, T. Photodiodes Embedded within Electronic Textiles. Sci. Rep. 2018, 8, 16205. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Torah, R.; Nunes-Matos, H.; Wei, Y.; Beeby, S.; Tudor, J.; Yang, K. Integration and Testing of a Three-Axis Accelerometer in a Woven E-Textile Sleeve for Wearable Movement Monitoring. Sensors 2020, 20, 5033. [Google Scholar] [CrossRef]
- Tognetti, A.; Lorussi, F.; Carbonaro, N.; de Rossi, D. Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life. Sensors 2015, 15, 28435–28455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes-Riley, T.; Lugoda, P.; Dias, T.; Trabi, C.; Morris, R. A Study of Thermistor Performance within a Textile Structure. Sensors 2017, 17, 1804. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, H.; Ouyang, S. Damping Properties of Flexible Epoxy Resin. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2008, 23, 411–414. [Google Scholar] [CrossRef]
- Blaga, M.; Seghedin, N.-E. Knitted Materials Capacity for Vibration Protection Application. TEXTEH Proc. 2019, 2019, 6–9. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H. Vibration Isolation Behaviour of 3D Polymeric Knitted Spacer Fabrics under Harmonic Vibration Testing Conditions. Polym. Test. 2015, 47, 120–129. [Google Scholar] [CrossRef]
- Chen, F.; Liu, Y.; Hu, H. An Experimental Study on Vibration Isolation Performance of Weft-Knitted Spacer Fabrics. Text. Res. J. 2016, 86, 2225–2235. [Google Scholar] [CrossRef]
- Hughes-Riley, T.; Dias, T. The Development of Acoustic and Vibration Sensing Yarns for Health Surveillance. In Proceedings of the 25th International Congress on Sound and Vibration (ICSV25), Hiroshima, Japan, 8–12 July 2018. [Google Scholar]
- Analog Devices. Small, Low Power, 3-Axis ± 3 g Accelerometer ADXL337 Data Sheet; Analog Devices: Norwood, MA, USA, 2017; p. 17. [Google Scholar]
Data Fitting | Coefficient of Determination (R2) | |
---|---|---|
Z-axis; soldered | S = (−4.06 ± 0.18) × 10−4 f + 1.18 ± 0.02 | 0.99 |
Z-axis; encapsulated | S = (−4.11 ± 0.22) × 10−4 f + 1.18 ± 0.02 | 0.99 |
Z-axis; final E-yarn | S = (−3.15 ± 0.21) × 10−4 f + 1.19 ± 0.02 | 0.98 |
X-axis; soldered | S = (−2.31 ± 0.21) × 10−4 f + 1.20 ± 0.02 | 0.96 |
X-axis; encapsulated | S = (−2.37 ± 0.24) × 10−4 f + 1.21 ± 0.02 | 0.95 |
X-axis; final E-yarn | S = (−1.72 ± 0.20) × 10−4 f + 1.19 ± 0.02 | 0.94 |
Frequency | Data Fitting | Coefficient of Determination (R2) | |
---|---|---|---|
Z-axis; soldered | 80 Hz | S = 1.13 ± 0.30 × 10−3 a + (1.85 ± 1.52) × 10−3 | 1.00 |
Z-axis; encapsulated | 80 Hz | S = 1.11 ± 0.91 × 10−3 a − (0.82 ± 4.70) × 10−3 | 1.00 |
Z-axis; final E-yarn | 80 Hz | S = 1.15 ± 0.92 × 10−3 a + (3.98 ± 4.74) × 10−3 | 1.00 |
Z-axis; soldered | 800 Hz | S = 0.84 ± 0.70 × 10−3 a − (1.16 ± 3.61) × 10−3 | 1.00 |
Z-axis; encapsulated | 800 Hz | S = 0.84 ± 0.37 × 10−3 a − (1.08 ± 1.89) × 103 | 1.00 |
Z-axis; final E-yarn | 800 Hz | S = 0.95 ± 1.77 × 10−3 a + (5.13 ± 9.10) × 10−3 | 1.00 |
Z-axis; soldered | 1250 Hz | S = 0.62 ± 0.27 × 10−3 a + (2.67 ± 1.38) × 103 | 1.00 |
Z-axis; encapsulated | 1250 Hz | S = 0.61 ± 0.32 × 10−3 a + (0.92 ± 1.65) × 10−3 | 1.00 |
Z-axis; final E-yarn | 1250 Hz | S = 0.71 ± 4.60 × 10−3 a + (3.74 ± 23.70) × 10−3 | 1.00 |
X-axis; soldered | 80 Hz | S = 1.16 ± 0.53 × 10−3 a + (4.12 ± 2.72) × 10−3 | 1.00 |
X-axis; encapsulated | 80 Hz | S = 1.17 ± 0.88 × 10−3 a − (6.82 ± 4.53) × 10−3 | 1.00 |
X-axis; final E-yarn | 80 Hz | S = 1.16 ± 0.35 × 10−3 a + (8.50 ± 1.79) × 10−3 | 1.00 |
X-axis; soldered | 800 Hz | S = 0.95 ± 1.40 × 10−3 a + (16.95 ± 7.22) × 10−3 | 1.00 |
X-axis; encapsulated | 800 Hz | S = 0.96 ± 3.18 × 10−3 a + (20.22 ± 16.40) × 10−3 | 1.00 |
X-axis; final E-yarn | 800 Hz | S = 1.01 ± 1.3 × 10−3 a + (12.70 ± 6.71) × 10−3 | 1.00 |
X-axis; soldered | 1250 Hz | S = 0.91 ± 1.90 × 10−3 a + (13.73 ± 9.78) × 10−3 | 1.00 |
X-axis; encapsulated | 1250 Hz | S = 0.92 ± 1.03 × 10−3 a + (6.92 ± 5.28) × 10−3 | 1.00 |
X-axis; final E-yarn | 1250 Hz | S = 0.97 ± 1.84 × 10−3 a + (37.60 ± 9.46) × 10−3 | 1.00 |
Axis | Frequency | Data Fitting | Coefficient of Determination (R2) |
---|---|---|---|
Z | 80 Hz | S = 1.09 ± 9.66 × 10−3 a + 0.03 ± 0.05 | 1.00 |
Z | 800 Hz | S = 1.51 ± 9.19 × 10−3 a + 0.10 ± 0.05 | 1.00 |
Z | 1250 Hz | S = 1.04 ± 45.00 × 10−3 a + 0.38 ± 0.23 | 1.00 |
X | 80 Hz | S = 1.19 ± 2.24 × 10−3 a + 0.01 ± 0.01 | 1.00 |
X | 800 Hz | S = 1.31 ± 6.19 × 10−3 a + 0.03 ± 0.32 | 1.00 |
X | 1250 Hz | S = 1.36 ± 5.37 × 10−3 a + 0.09 ± 0.03 | 0.99 |
Data Fitting | Coefficient of Determination (R2) | |
---|---|---|
Frequency dependence | S = (−3.18 ± 0.04) × 10−4 f + 1.18 ± 0.00 | 1.00 |
Amplitude dependence: 80 Hz | S = 1.13 ± 0.47 × 10−3 f + (21.02 ± 2.40) × 10−3 | 1.00 |
Amplitude dependence: 800 Hz | S = 0.92 ± 1.00 × 10−3 a − (3.85 ± 5.14) × 10−3 | 1.00 |
Amplitude dependence: 1250 Hz | S = 0.76 ± 2.79 × 10−3 a + (23.14 ± 14.40) × 10−3 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahemtulla, Z.; Hughes-Riley, T.; Dias, T. Vibration-Sensing Electronic Yarns for the Monitoring of Hand Transmitted Vibrations. Sensors 2021, 21, 2780. https://doi.org/10.3390/s21082780
Rahemtulla Z, Hughes-Riley T, Dias T. Vibration-Sensing Electronic Yarns for the Monitoring of Hand Transmitted Vibrations. Sensors. 2021; 21(8):2780. https://doi.org/10.3390/s21082780
Chicago/Turabian StyleRahemtulla, Zahra, Theodore Hughes-Riley, and Tilak Dias. 2021. "Vibration-Sensing Electronic Yarns for the Monitoring of Hand Transmitted Vibrations" Sensors 21, no. 8: 2780. https://doi.org/10.3390/s21082780
APA StyleRahemtulla, Z., Hughes-Riley, T., & Dias, T. (2021). Vibration-Sensing Electronic Yarns for the Monitoring of Hand Transmitted Vibrations. Sensors, 21(8), 2780. https://doi.org/10.3390/s21082780