Smart Energy Harvesting for Internet of Things Networks
Abstract
:1. Introduction
1.1. Related Work
1.2. Contributions & Outline
- Based on the principles of Contract Theory, an optimization problem is formulated and solved to determine the IoT nodes’ transmission power, transmitted data to the associated access point, and the energy transmitters’ optimal charging power, in order for the overall system to converge to an optimal and stable point of operation;
- An artificial-intelligence-based reinforcement learning mechanism is introduced, which targets the most beneficial long-term energy transmitter selection from each IoT energy harvesting node in an autonomous and distributed manner.
2. System Model
3. Contract Theoretic Energy Harvesting
3.1. Types, Utility Functions, and Contracts
3.2. Problem Formulation
3.3. Problem Solution
4. Artificial Intelligent Association
Algorithm 1: Max Log-Linear Algorithm |
|
5. Numerical Results
5.1. Pure Operation Performance
5.2. Benefits of Socio-Physical Approach
5.3. Comparative Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proofs
Appendix A.1. Proof of Proposition 1
Appendix A.2. Proof of Proposition 2
Appendix A.3. Proof of Proposition 3
Appendix A.4. Proof of Theorem 1
Appendix A.5. Proof of Lemma 1
Appendix A.6. Proof of Lemma 2
References
- Li, S.; Da Xu, L.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Huang, X.; Yu, R.; Kang, J.; Xia, Z.; Zhang, Y. Software defined networking for energy harvesting internet of things. IEEE Internet Things J. 2018, 5, 1389–1399. [Google Scholar] [CrossRef] [Green Version]
- Tsiropoulou, E.E.; Paruchuri, S.T.; Baras, J.S. Interest, energy and physical-aware coalition formation and resource allocation in smart IoT applications. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 22–24 March 2017; pp. 1–6. [Google Scholar]
- Wei, Z.; Zhao, B.; Su, J.; Lu, X. Dynamic edge computation offloading for internet of things with energy harvesting: A learning method. IEEE Internet Things J. 2018, 6, 4436–4447. [Google Scholar] [CrossRef]
- Zorbas, D.; Raveneau, P.; Ghamri-Doudane, Y.; Douligeris, C. The charger positioning problem in clustered RF-power harvesting wireless sensor networks. Ad Hoc Netw. 2018, 78, 42–53. [Google Scholar] [CrossRef]
- Vamvakas, P.; Tsiropoulou, E.E.; Vomvas, M.; Papavassiliou, S. Adaptive power management in wireless powered communication networks: A user-centric approach. In Proceedings of the 2017 IEEE 38th Sarnoff Symposium, Newark, NJ, USA, 18–20 September 2017; pp. 1–6. [Google Scholar]
- Caillouet, C.; Razafindralambo, T.; Zorbas, D. Optimal placement of drones for fast sensor energy replenishment using wireless power transfer. In Proceedings of the 2019 Wireless Days (WD), Manchester, UK, 24–26 April 2019; pp. 1–6. [Google Scholar]
- Adila, A.S.; Husam, A.; Husi, G. Towards the self-powered Internet of Things (IoT) by energy harvesting: Trends and technologies for green IoT. In Proceedings of the 2018 2nd International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS), Cavan, Ireland, 16–18 April 2018; pp. 1–5. [Google Scholar]
- Yao, J.; Ansari, N. Caching in energy harvesting aided Internet of Things: A game-theoretic approach. IEEE Internet Things J. 2018, 6, 3194–3201. [Google Scholar] [CrossRef]
- Zeadally, S.; Shaikh, F.K.; Talpur, A.; Sheng, Q.Z. Design architectures for energy harvesting in the Internet of Things. Renew. Sustain. Energy Rev. 2020, 128, 109901. [Google Scholar] [CrossRef]
- Mao, B.; Kawamoto, Y.; Kato, N. AI-based joint optimization of QoS and security for 6G energy harvesting internet of things. IEEE Internet Things J. 2020, 7, 7032–7042. [Google Scholar] [CrossRef]
- Akan, O.B.; Cetinkaya, O.; Koca, C.; Ozger, M. Internet of hybrid energy harvesting things. IEEE Internet Things J. 2017, 5, 736–746. [Google Scholar] [CrossRef]
- Hou, Z.; Chen, H.; Li, Y.; Vucetic, B. Incentive mechanism design for wireless energy harvesting-based Internet of Things. IEEE Internet Things J. 2017, 5, 2620–2632. [Google Scholar] [CrossRef] [Green Version]
- Loreti, P.; Bracciale, L.; Bianchi, G. StableSENS: Sampling time decision algorithm for IoT energy harvesting devices. IEEE Internet Things J. 2019, 6, 9908–9918. [Google Scholar] [CrossRef]
- Guntupalli, L.; Gidlund, M.; Li, F.Y. An on-demand energy requesting scheme for wireless energy harvesting powered IoT networks. IEEE Internet Things J. 2018, 5, 2868–2879. [Google Scholar] [CrossRef]
- Huang, X.L.; Ma, X.; Hu, F. Machine learning and intelligent communications. Mob. Netw. Appl. 2018, 23, 68–70. [Google Scholar] [CrossRef] [Green Version]
- Chu, M.; Liao, X.; Li, H.; Cui, S. Power control in energy harvesting multiple access system with reinforcement learning. IEEE Internet Things J. 2019, 6, 9175–9186. [Google Scholar] [CrossRef]
- Sikeridis, D.; Tsiropoulou, E.E.; Devetsikiotis, M.; Papavassiliou, S. Socio-spatial resource management in wireless powered public safety networks. In Proceedings of the MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 810–815. [Google Scholar]
- Sikeridis, D.; Tsiropoulou, E.E.; Devetsikiotis, M.; Papavassiliou, S. Energy-efficient orchestration in wireless powered internet of things infrastructures. IEEE Trans. Green Commun. Netw. 2018, 3, 317–328. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Khan, J.Y.; Ngo, D.T. A distributed energy-harvesting-aware routing algorithm for heterogeneous IoT networks. IEEE Trans. Green Commun. Netw. 2018, 2, 1115–1127. [Google Scholar] [CrossRef]
- Li, P.; Long, Z.; Yang, Z. RF Energy Harvesting for Battery-Less and Maintenance-Free Condition Monitoring of Railway Tracks. IEEE Internet Things J. 2020, 8, 3512–3523. [Google Scholar] [CrossRef]
- Tsiropoulou, E.E.; Mitsis, G.; Papavassiliou, S. Interest-aware energy collection & resource management in machine to machine communications. Ad Hoc Netw. 2018, 68, 48–57. [Google Scholar]
- Bolton, P.; Dewatripont, M. Contract Theory; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Smith, S.A. Contract Theory; OUP Oxford: Oxford, UK, 2004. [Google Scholar]
- Ertel, W. Introduction to Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Tsiropoulou, E.E.; Vamvakas, P.; Katsinis, G.K.; Papavassiliou, S. Combined power and rate allocation in self-optimized multi-service two-tier femtocell networks. Comput. Commun. 2015, 72, 38–48. [Google Scholar] [CrossRef]
- Gunawan, T.S.; Yaldi, I.R.H.; Kartiwi, M.; Mansor, H. Performance evaluation of smart home system using internet of things. Int. J. Electr. Comput. Eng. 2018, 8, 400. [Google Scholar] [CrossRef]
- Diamanti, M.; Fragkos, G.; Tsiropoulou, E.E.; Papavassiliou, S. Unified User Association and Contract-Theoretic Resource Orchestration in NOMA Heterogeneous Wireless Networks. IEEE Open J. Commun. Soc. 2020, 1, 1485–1502. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Yuan, Y.; Han, S.; Chih-Lin, I.; Wang, Z. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 2015, 53, 74–81. [Google Scholar] [CrossRef]
- Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Adu-Manu, K.S.; Adam, N.; Tapparello, C.; Ayatollahi, H.; Heinzelman, W. Energy-Harvesting Wireless Sensor Networks (EH-WSNs) A Review. ACM Trans. Sens. Netw. (TOSN) 2018, 14, 1–50. [Google Scholar] [CrossRef]
Acronym | Meaning |
---|---|
IoT | Internet of Things |
FAP | Femtocell Access Point |
QoS | Quality of Service |
UAV | Unmanned Aerial Vehicle |
WPCN | Wireless Powered Communication Network |
WET | Wireless Energy Transfer |
WIT | Wireless Information Transmission |
NOMA | Non-Orthogonal Multiple Access |
SIC | Successive Interference Cancellation |
AWGN | Additive White Gaussian Noise |
IC | Incentive Compatibility |
IR | Individual Rationality |
Notation | Description [Units] |
---|---|
F | Set of femtocells |
f | Index of femtocell |
I | Set of IoT nodes |
Distance among two IoT nodes [m] | |
Distance of an IoT node from a FAP | |
WIT phases’ duration [sec] | |
WET phases’ duration [sec] | |
timeslot [sec] | |
Relationship factor among two IoT nodes | |
Channel gain among two IoT nodes | |
Channel gain among an IoT node and a FAP | |
IoT node’s available energy [J] | |
IoT node’s maximum possible transmission power [W] | |
IoT node’s consumed energy for data transmission [J] | |
IoT node’s harvested energy [J] | |
IoT node’s transmission power [W] | |
FAP’s charging power for the IoT node i [W] | |
IoT node’s achievable data rate [bps] | |
W | System’s bandwidth [Hz] |
Power of zero-mean Additive White Gaussian Noise (AWGN) | |
Socio-physical factor of the IoT node i | |
Proximity factor of the IoT node i to FAP f | |
Energy conversion efficiency factor of the IoT node i | |
Channel quality vector | |
Normalized channel quality vector | |
Communication interest factor | |
IoT node’s type, effort, reward, utility function | |
k | IoT node’s data transmission cost |
Evaluation function | |
w | FAP’s cost to provide the rewards |
FAP’s utility function |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangoleye, F.; Irtija, N.; Tsiropoulou, E.E. Smart Energy Harvesting for Internet of Things Networks. Sensors 2021, 21, 2755. https://doi.org/10.3390/s21082755
Sangoleye F, Irtija N, Tsiropoulou EE. Smart Energy Harvesting for Internet of Things Networks. Sensors. 2021; 21(8):2755. https://doi.org/10.3390/s21082755
Chicago/Turabian StyleSangoleye, Fisayo, Nafis Irtija, and Eirini Eleni Tsiropoulou. 2021. "Smart Energy Harvesting for Internet of Things Networks" Sensors 21, no. 8: 2755. https://doi.org/10.3390/s21082755
APA StyleSangoleye, F., Irtija, N., & Tsiropoulou, E. E. (2021). Smart Energy Harvesting for Internet of Things Networks. Sensors, 21(8), 2755. https://doi.org/10.3390/s21082755