# An Anti-Jamming Method against Two-Dimensional Deception Jamming by Spatial Location Feature Recognition

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Signal Model

## 3. 2D Deception Jamming Countermeasures Analysis

#### 3.1. False-Target Recognition in Range Dimension

#### 3.1.1. Identification by Only Changing Bandwidth

#### 3.1.2. Identification by Only Changing Pulse Width

#### 3.1.3. Identification by Changing Pulse Width and Bandwidth Synchronously

_{p}are changed.

_{p}is changed. The red curve represents the ratio of the pulse width change to the original pulse width of the signal at different sampling frequencies in case 3, where both B and T

_{p}are changed.

#### 3.2. False-Target Recognition in Azimuth Dimension

#### 3.3. Spatial Location Feature Recognition Anti-Jamming Method

## 4. Simulations

#### 4.1. 2D Deception Jamming Simulation

#### 4.2. Anti-Jamming Results with Single Point

#### 4.3. Anti-Jamming Results with Multiple Points

#### 4.4. Anti-Jamming Results with Yak-42 Model Data

- (1)
- The relationship between the spatial location distribution of 2D false targets generated by ISRJ and the signal parameters is analyzed, and a relevant mathematical model is established.
- (2)
- Based on the resolution, two similar twinning waveforms are designed, and the spatial position of false targets can be moved by actively adjusting the three important parameters of the transmitted signal bandwidth, pulse width, and carrier frequency, which provides a basis for comparing information to identify true and false targets.
- (3)
- Based on the two imaging results, the true and false target discrimination function is designed, and the effects of the sidelobe and multipoint targets in the imaging on the discrimination function are discussed.
- (4)
- In this paper, a jamming suppression method based on the spatial location features of false targets is combined with the imaging results of radar transmitter and receiver for joint design processing to avoid complex filtering and feature the extraction of signals. Furthermore, the waveform structures of the two signals is consistent, and only minor adjustment of the relevant core parameters is required, which indicated low requirements for the radar system, making it possible to quickly determine true and false targets and eliminate the false ones.

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Xu, L.; Feng, D.; Pan, X.; Liu, Q.; Wang, X. An improved digital false-target image synthesizer method for countering inverse synthetic aperture radar. IEEE Sens. J.
**2015**, 15, 5870–5877. [Google Scholar] [CrossRef] - Wang, F.; Eibert, T.F.; Jin, Y. Simulation of ISAR imaging for a space target and reconstruction under sparse sampling via compressed sensing. IEEE Trans. Geosci. Remote Sens.
**2015**, 53, 3432–3441. [Google Scholar] [CrossRef] - Liu, X.; Zhang, Q.; Chen, Y.; Su, L.; Chen, Y. Task allocation optimization for multi-target ISAR imaging in radar network. IEEE Sens. J.
**2018**, 18, 122–132. [Google Scholar] [CrossRef] - Li, G.; Zhang, Q.; Su, L.; Luo, Y.; Liang, J. A Digital false-target image synthesizer method against ISAR based on polyphase code and sub-nyquist sampling. IEEE Geosci. Remote Sens. Lett.
**2020**, 17, 372–376. [Google Scholar] [CrossRef] - Wang, W.; Pan, X.; Liu, Y.; Feng, D.; Fu, Q. Sub-nyquist sampling jamming against ISAR with compressive sensing. IEEE Sens. J.
**2014**, 14, 3131–3136. [Google Scholar] [CrossRef] - Tai, N.; Wang, Y.; Han, H.; Xu, X.; Wang, C.; Zeng, Y.; Wang, L. Deception jamming against ISAR based on convolution and sub-nyquist sampling. IEEE Sens. J.
**2020**, 20, 1807–1820. [Google Scholar] [CrossRef] - Chen, J.; Wu, W.; Xu, S.; Chen, Z.; Zou, J. Band pass filter design against interrupted-sampling repeater jamming based on time-frequency analysis. IET Radar Sonar Navig.
**2019**, 13, 1646–1654. [Google Scholar] [CrossRef] - Chen, J.; Xu, S.; Zou, J.; Chen, Z. Interrupted-sampling repeater jamming suppression based on stacked bidirectional gated recurrent unit network and infinite training. IEEE Access
**2019**, 7, 107428–107437. [Google Scholar] [CrossRef] - Yu, M.; Dong, S.; Duan, X.; Liu, S. A novel jamming suppression method for interrupted sampling repeater jamming based on singular spectrum entropy function. Sensors
**2019**, 19, 136. [Google Scholar] [CrossRef] [Green Version] - Zhou, C.; Liu, Q.; Hu, C. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming. J. Radars
**2019**, 8, 100–106. [Google Scholar] - Cui, G.; Yu, X.; Yang, J.; Fu, Y.; Kong, L. An overview of waveform optimization methods for cognitive radar. J. Radars
**2019**, 8, 537–557. [Google Scholar] - Zhou, C.; Tang, Z.; Zhu, Z.; Zhang, Y. Anti-interrupted sampling repeater jamming waveform design method. J. Electron. Inf. Technol.
**2018**, 40, 2198–2205. [Google Scholar] - Huan, S.; Dai, G.; Luo, G.; Ai, S. Bayesian compress sensing based countermeasure scheme against the interrupted sampling repeater jamming. Sensors
**2019**, 19, 3279. [Google Scholar] [CrossRef] [Green Version] - Zhou, K.; Li, D.; Su, Y.; Liu, T. Joint design of transmit waveform and mismatch filter in the presence of interrupted sampling repeater jamming. IEEE Signal Process. Lett.
**2020**, 27, 1610–1614. [Google Scholar] [CrossRef] - Yang, Y.; Zhang, W.; Yang, J. Study on frequency-shifting jamming to linear frequency modulation pulse compression radars. In Proceedings of the International Conference on Wireless Communications & Signal Processing, Nanjing, China, 13–15 November 2009; pp. 1–5. [Google Scholar]
- Hanbali, S.B.S. Technique to counter improved active echo cancellation based on ISRJ with frequency shifting. IEEE Sens. J.
**2019**, 19, 9194–9199. [Google Scholar] [CrossRef] - Hanbali, S.B.S.; Kastantin, R. Countering a self-protection frequency-shifting jamming against LFM pulse compression radars. Int. J. Electron. Telecommun.
**2017**, 63, 145–150. [Google Scholar] [CrossRef] [Green Version] - Xu, L.; Feng, D.; Zhang, W.; Wang, X. Group targets generation against ISAR based on intermittent-sampling repeater jamming (ISRJ). J. Natl. Univ. Def. Technol.
**2013**, 35, 140–145. [Google Scholar] - Feng, D.; Xu, L.; Pan, X.; Wang, X. Jamming wideband radar using interrupted-sampling repeater. IEEE Trans. Aerosp. Electron. Syst.
**2017**, 53, 1341–1354. [Google Scholar] [CrossRef] - Wang, Y.; Shu, C.; Zhang, S.; Huang, P.; Ji, J. Array ISAR of precessional cone target generated by intermittent sampling repeater jamming in fast and slow time. J. Electron. Inf. Technol.
**2016**, 38, 450–454. [Google Scholar] - Yang, W.; Chen, Y.; Wang, T. Intermittent sampling jamming against waveform agile SAR modulated in fast or slow time. Syst. Eng. Electron.
**2013**, 34, 2456–2462. [Google Scholar] - Huang, L.; Zong, Z.; Zhang, S.; Wang, W.Q. Joint two-dimensional deception countering ISAR via frequency diverse array. IEEE Signal Process. Lett.
**2021**, 28, 773–777. [Google Scholar] [CrossRef] - Song, L.; Qiao, X.; Meng, X.; Jin, M. Study on the method of polarization suppression of cheating jamming in pulse Doppler radar. J. Syst. Eng. Electron.
**2005**, 16, 310–315. [Google Scholar] - Ahmed, A.; Shokrallah, A.M.G.; Yuan, Z.; Ying, X.; Bin, T. Deceptive jamming suppression in multistatic radar based on coherent clustering. J. Syst. Eng. Electron.
**2018**, 29, 269–277. [Google Scholar] [CrossRef] - Berger, S.D. Digital radio frequency memory linear range gate stealer spectrum. IEEE Trans. Aerosp. Electron. Syst.
**2003**, 39, 725–735. [Google Scholar] [CrossRef] - Pan, X.; Wang, W.; Feng, D.; Liu, Y.; Fu, Q.; Wang, G. On deception jamming for countering bistatic ISAR based on sub-Nyquist sampling. IET Radar Sonar Navig.
**2014**, 8, 173–179. [Google Scholar] [CrossRef] - Feng, D.; Tao, H.; Yang, Y.; Liu, Z. Jamming de-chirping radar using interrupted-sampling repeater. Sci. China Inf. Sci.
**2011**, 54, 2138–2146. [Google Scholar] [CrossRef] - Liu, Z.-D.; Zhang, Q.; Li, G.-M.; Li, K.-M.; Wang, D. Improved Blanket Jamming Against ISAR Based on Nonperiodic Interrupted Sampling Modulation. IEEE Sens. J.
**2021**, 21, 430–437. [Google Scholar] [CrossRef] - Wang, Y.; Abdelkader, A.C.; Zhao, B.; Wang, J.X. ISAR imaging of maneuvering targets based on the modified discrete polynomial-phase transform. Sensors
**2015**, 15, 22401–22418. [Google Scholar] [CrossRef] [Green Version] - Wang, Y.; Kang, J.; Jiang, Y.C. ISAR imaging of maneuvering target based on the local polynomial wigner distribution and integrated high-order ambiguity function for cubic phase signal model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
**2014**, 7, 2971–2991. [Google Scholar] [CrossRef] - Wang, X.; Liu, J.; Zhang, W.; Fu, Q.; Liu, Z.; Xie, X. Mathematic principle of interrupted-sampling repeater jamming (ISRJ). Sci. China Ser. F-Inf. Sci.
**2007**, 50, 113–123. [Google Scholar] [CrossRef]

**Figure 3.**Analysis results of different jamming strategies: (

**a**) ratio of bandwidth variation to bandwidth of signal vs. sampling frequency shift relative to bandwidth; (

**b**) ratio of pulse width variation to pulse width of signal vs. sampling frequency shift relative to bandwidth.

**Figure 6.**Comparison and decision, where red bin represents the true target, blue bins represent the false targets found with transmission of ${S}_{1}\left(t\right)$, and yellow bins represent the false targets found with transmission of ${S}_{2}\left(t\right)$.

**Figure 8.**Comparison of single scattering point’s imaging results before and after side lobe elimination: (

**a**) without side lobe elimination; (

**b**) with side lobe elimination.

**Figure 9.**2D deception jamming results: (

**a**) jamming results without eliminating sidelobe; (

**b**) jamming results after eliminating sidelobe.

**Figure 11.**Anti-jamming results in range dimension with three different anti-jamming strategies: (

**a**) case 1, where only bandwidth is changed; (

**b**) case 2 where only pulse width is changed; (

**c**) case 3, where both the bandwidth and pulse width are changed.

**Figure 12.**2D deception jamming results by twinning waveform: (

**a**) jamming results without eliminating sidelobe; (

**b**) jamming results after eliminating sidelobe.

**Figure 13.**2D deception anti-jamming results: (

**a**) anti-jamming results without eliminating sidelobe; (

**b**) anti-jamming results after eliminating sidelobe.

**Figure 14.**Simulated multiple points model: (

**a**) aircraft model of 74 points; (

**b**) ISAR imaging without jamming.

**Figure 15.**2D jamming results with different signal parameters: (

**a**) original transmitted signal; (

**b**) anti-jamming twinning signal.

**Figure 16.**2D deception anti-jamming results: (

**a**) anti-jamming results without eliminating sidelobe; (

**b**) anti-jamming results after eliminating sidelobe and spatial position mapping.

**Figure 17.**2D jamming results with different signal parameters: (

**a**) original transmitted signal; (

**b**) anti-jamming twinning signal.

**Figure 18.**2D deception anti-jamming results: (

**a**) anti-jamming results without eliminating sidelobe; (

**b**) anti-jamming results after eliminating sidelobe and performing spatial position mapping.

Parameters | Numerical Value | Parameters | Numerical Value |
---|---|---|---|

${f}_{0}\left(\mathrm{G}\mathrm{H}\mathrm{z}\right)$ | 8 | $\mathrm{PRF}\left(\mathrm{H}\mathrm{z}\right)$ | 200 |

$B\left(\mathrm{M}\mathrm{H}\mathrm{z}\right)$ | 200 | $\omega \left(\mathrm{rad}\right)$ | 0.02 |

${T}_{p}$ (μs) | 1 | $\alpha \left(\mathrm{rad}\right)$ | 0 |

${R}_{j}\left(\mathrm{km}\right)$ | 0.5 | ${R}_{r}\left(\mathrm{km}\right)$ | 2 |

Parameters | Numerical Value | Parameters | Numerical Value |
---|---|---|---|

${f}_{1}\left(\mathrm{M}\mathrm{H}\mathrm{z}\right)$ | 7.5 | ${f}_{2}\left(\mathrm{H}\mathrm{z}\right)$ | 3.13 |

${\gamma}_{1}$ | 0.5 | ${\gamma}_{2}$ | 0.5 |

**Table 3.**Anti-jamming simulation parameters in range domain with three different anti-jamming strategies.

Parameters | Numerical Value in Case 1 | Numerical Value in Case 2 | Numerical Value in Case 3 |
---|---|---|---|

${B}^{\prime}\left(\mathrm{M}\mathrm{H}\mathrm{z}\right)$ | 176 | 200 | 187 |

${T}_{p}$ (μs) | 1 | 1.13 | 1.06 |

Parameters | Numerical Value | Parameters | Numerical Value |
---|---|---|---|

${f}_{c}\left(\mathrm{G}\mathrm{H}\mathrm{z}\right)$ | 8 | ${f}_{c}^{\prime}\left(\mathrm{G}\mathrm{H}\mathrm{z}\right)$ | 6.4 |

The Anti-Jamming Results without Eliminating the Sidelobe | The Anti-Jamming Results after Eliminating the Sidelobe | |
---|---|---|

Entropy | 0.4978 dB | 0.4302 dB |

RMSE | 2.1302 | 0.1684 |

Parameters | Numerical Value | Parameters | Numerical Value |
---|---|---|---|

${f}_{1}\left(\mathrm{M}\mathrm{H}\mathrm{z}\right)$ | 120 | ${f}_{2}\left(\mathrm{H}\mathrm{z}\right)$ | 50 |

${\gamma}_{1}$ | 0.5 | ${\gamma}_{2}$ | 0.5 |

Parameters | Numerical Value | Parameters | Numerical Value |
---|---|---|---|

$B\left(\mathrm{M}\mathrm{H}\mathrm{z}\right)$ | 200 | ${B}^{\prime}\left(\mathrm{M}\mathrm{H}\mathrm{z}\right)$ | 199 |

${T}_{p}$ (μs) | 1 | ${T}_{p}^{\prime}$ (μs) | 1.0042 |

${f}_{c}\left(\mathrm{G}\mathrm{H}\mathrm{z}\right)$ | 8 | ${f}_{c}^{\prime}\left(\mathrm{G}\mathrm{H}\mathrm{z}\right)$ | 7.88 |

The 2D ISRJ Results | The Anti-Jamming Results without Eliminating Sidelobe | The Anti-Jamming Results in This Paper | |
---|---|---|---|

Entropy | 0.7364 dB | 0.7196 dB | 0.5434 dB |

RMSE | 16.6018 | 12.5382 | 1.0568 |

The 2D ISRJ Results | The Anti-Jamming Results without Eliminating Sidelobe | The Anti-Jamming Results in This Paper | |
---|---|---|---|

Entropy | 0.5508 dB | 0.5448 dB | 0.4260 dB |

RMSE | 27.8921 | 20.5304 | 1.3951 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, Z.; Zhang, Q.; Li, K.
An Anti-Jamming Method against Two-Dimensional Deception Jamming by Spatial Location Feature Recognition. *Sensors* **2021**, *21*, 7702.
https://doi.org/10.3390/s21227702

**AMA Style**

Liu Z, Zhang Q, Li K.
An Anti-Jamming Method against Two-Dimensional Deception Jamming by Spatial Location Feature Recognition. *Sensors*. 2021; 21(22):7702.
https://doi.org/10.3390/s21227702

**Chicago/Turabian Style**

Liu, Zhidong, Qun Zhang, and Kaiming Li.
2021. "An Anti-Jamming Method against Two-Dimensional Deception Jamming by Spatial Location Feature Recognition" *Sensors* 21, no. 22: 7702.
https://doi.org/10.3390/s21227702