Electrode Size and Placement for Surface EMG Bipolar Detection from the Brachioradialis Muscle: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stage 1: Identifying the Research Question
2.2. Stage 2: Identifying Relevant Studies
2.3. Stage 3: Selecting Studies
2.4. Stage 4: Charting the Data
2.5. Stage 5: Summarizing and Reporting the Data
2.6. Stage 6: Consultation
2.7. Sources of Crosstalk and Glossary of Terms Used in This Review
3. Results
3.1. Sensor Location Guidelines on the Brachioradials Muscle Available in Literature
3.2. Studies Assessing the Brachioradialis Muscle by Means of sEMG
3.3. Studies Mentioning Crosstalk
3.4. Studies Assessing Crosstalk on the Brachioradialis Muscle
4. Discussion
4.1. The Issue of Crosstalk
4.2. Reccomendation on Electrode Placement on the Brachioradialis Muscle
4.3. Implications for Clinical Practice
4.4. Available Tutorials and Teaching Material on sEMG
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Staudenmann, D.; Taube, W. Brachialis muscle activity can be assessed with surface electromyography. J. Electromyogr. Kinesiol. 2015, 25, 199–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keenan, M.A.E.; Haider, T.T.; Stone, L.R. Dynamic electromyography to assess elbow spasticity. J. Hand Surg. Am. 1990, 15, 607–614. [Google Scholar] [CrossRef]
- Keenan, M.A.; Fuller, D.A.; Whyte, J.; Mayer, N.; Esquenazi, A.; Fidler-Sheppard, R. The influence of dynamic polyelectromyography in formulating a surgical plan in treatment of spastic elbow flexion deformity. Arch. Phys. Med. Rehabil. 2003, 84, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.; Merlo, A.; Cosma, M.; Ferraresi, G.; Marchi, P.; Venturini, E. Electromyographic study of the associated reaction of elbow flexion during gait in patients with hemiplegia. Gait Posture 2012, 35, S39–S40. [Google Scholar] [CrossRef]
- López, N.M.; Orosco, E.; di Sciascio, F. Multichannel surface electromyography classification based on muscular synergy. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buonos Aires, Argentina, 31 August–4 September 2010; pp. 1658–1661. [Google Scholar]
- Dewald, H.A.; Lukyanenko, P.; Lambrecht, J.M.; Anderson, J.R.; Tyler, D.J.; Kirsch, R.F.; Williams, M.R. Stable, three degree-of-freedom myoelectric prosthetic control via chronic bipolar intramuscular electrodes: A case study. J. Neuroeng. Rehabil. 2019, 16, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Carius, D.; Kugler, P.; Kuhwald, H.M.; Wollny, R. Absolute and relative intrasession reliability of surface EMG variables for voluntary precise forearm movements. J. Electromyogr. Kinesiol. 2015, 25, 860–869. [Google Scholar] [CrossRef]
- Gazzoni, M.; Celadon, N.; Mastrapasqua, D.; Paleari, M.; Margaria, V.; Ariano, P. Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography. PLoS One 2014, 9. [Google Scholar] [CrossRef]
- Cram, J.R.; Kasman, G.S.; Holtz, J. Introduction to Surface Electromyography, Criswell, E., Ed.; 1st ed.; Jones and Bartlett Publishers: Sudbury, MA, USA, 1998; Volume 3, ISBN 3904144987. [Google Scholar]
- Merlo, A.; Campanini, I. Applications In Movement And Gait Analysis. In Surface Electromyography. Physiology, Engineering, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 440–459. ISBN 9781118987025. [Google Scholar]
- Mesin, L.; Smith, S.; Hugo, S.; Viljoen, S.; Hanekom, T. Effect of spatial filtering on crosstalk reduction in surface EMG recordings. Med. Eng. Phys. 2009, 31, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. Theory Pract. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Barbero, M.; Merletti, R.; Rainoldi, A. Atlas of Muscle Innervation Zones; Springer Milan: Milan, Italy, 2012; ISBN 978-88-470-2462-5. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Basmajian, J.V.; Blumenstein, R. Electrode placement in electromyographic biofeedback. In Biofeedback: Principles and Practice for Clinicians; Williams & Wilkins: Baltimore, MD, USA, 1989; pp. 369–382. [Google Scholar]
- Blanc, Y.; Dimanico, U. Electrode Placement in Surface Electromyography (sEMG) ”Minimal Crosstalk Area“ (MCA). Open Rehabil. J. 2010, 3, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Lowery, M.; Nolan, P.; O’Malley, M. Electromyogram median frequency, spectral compression and muscle fibre conduction velocity during sustained sub-maximal contraction of the brachioradialis muscle. J. Electromyogr. Kinesiol. 2002, 12, 111–118. [Google Scholar] [CrossRef]
- Lowery, M.M.; O’Malley, M.J. Analysis and simulation of changes in EMG amplitude during high-level fatiguing contractions. IEEE Trans. Biomed. Eng. 2003, 50, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Jafari, Z.; Edrisi, M.; Marateb, H.R. An Electromyographic-driven Musculoskeletal Torque Model using Neuro-Fuzzy System Identification: A Case Study. J. Med. Signals Sens. 2014, 4, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Boccia, G.; Pizzigalli, L.; Formicola, D.; Ivaldi, M.; Rainoldi, A. Higher Neuromuscular Manifestations of Fatigue in Dynamic than Isometric Pull-Up Tasks in Rock Climbers. J. Hum. Kinet. 2015, 47, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Hajian, G.; Morin, E.; Etemad, A. PCA-Based Channel Selection in High-Density EMG for Improving Force Estimation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; Volume 1, pp. 652–655. [Google Scholar] [CrossRef]
- Delagi, E.F.; Perotto, A. Anatomical guide for the electromyographer, 5th ed.Charles C Thomas Pub: Springfield, IL, USA, 2011. [Google Scholar]
- Tang, A.; Rymer, W.Z. Abnormal force EMG relations in paretic limbs of hemiparetic human subjects. J. Neurol. Neurosurg. Psychiatry 1981, 44, 690–698. [Google Scholar] [CrossRef] [Green Version]
- Barry, B.K.; Warman, G.E.; Carson, R.G. Age-related differences in rapid muscle activation after rate of force development training of the elbow flexors. Exp. Brain Res. 2004, 162, 122–132. [Google Scholar] [CrossRef]
- Myers, C.M.; Kim, J.S.; Florian, J.P. Effects of repeated long-duration water immersions on skeletal muscle performance in well-trained male divers. Eur. J. Appl. Physiol. 2018, 118, 2065–2076. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, N.; Yue, S.; Tian, X.; Li, K. Cross-Recurrence Quantification Analysis for Inter-Muscular Coordination during Power Grip at Different Force Levels. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; Volume 2018, pp. 2410–2413. [Google Scholar] [CrossRef]
- Nakazawa, K.; Kawakami, Y.; Fukunaga, T.; Yano, H.; Miyashita, M. Differences in activation patterns in elbow flexor muscles during isometric, concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.I.; Nakazawa, K.; Yano, H.; Ohtsuki, T. Differential angle-dependent modulation of the long-latency stretch reflex responses in elbow flexion synergists. J. Electromyogr. Kinesiol. 2000, 10, 135–142. [Google Scholar] [CrossRef]
- Liu, Y.; Hong, Y.; Ji, L. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia. J. Healthc. Eng. 2018, 2018, 1817485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semmler, J.G.; Ebert, S.A.; Amarasena, J. Eccentric muscle damage increases intermuscular coherence during a fatiguing isometric contraction. Acta Physiol. 2013, 208, 362–375. [Google Scholar] [CrossRef] [PubMed]
- de Serres, S.J.; Hebert, L.J.; Arsenault, A.B.; Goulet, C. Effect of pronation and supination tasks on elbow flexor muscles. J. Electromyogr. Kinesiol. 1992, 2, 53–58. [Google Scholar] [CrossRef]
- Baudry, S.; Sarrazin, S.; Duchateau, J. Effects of load magnitude on muscular activity and tissue oxygenation during repeated elbow flexions until failure. Eur. J. Appl. Physiol. 2013, 113, 1895–1904. [Google Scholar] [CrossRef]
- Sommer, L.F.; Barreira, C.; Noriega, C.; Camargo-Junior, F.; Moura, R.T.; Forner-Cordero, A. Elbow Joint Angle Estimation with Surface Electromyography Using Autoregressive Models. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; Volume 2018, pp. 1472–1475. [Google Scholar] [CrossRef]
- Jaskólska, A.; Kisiel-Sajewicz, K.; Brzenczek-Owczarzak, W.; Yue, G.H.; Jaskólski, A. EMG and MMG of agonist and antagonist muscles as a function of age and joint angle. J. Electromyogr. Kinesiol. 2006, 16, 89–102. [Google Scholar] [CrossRef]
- Onety, G.C.S.; Leonel, D.V.; Saquy, P.C.; da Silva, G.P.; Ferreira, B.; Varise, T.G.; de Sousa, L.G.; Verri, E.D.; Siéssere, S.; Semprini, M.; et al. Analysis of Endodontist Posture Utilizing Cinemetry, Surface Electromyography and Ergonomic Checklists. Braz. Dent. J 2014, 25, 508–518. [Google Scholar] [CrossRef]
- Nagata, S.; Arsenault, A.B.; Gagnon, D.; Smyth, G.; Mathieu, P.-A. EMG power spectrum as a measure of muscular fatigue at different levels of contraction. Med. Biol. Eng. Comput. 1990, 28, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Kasprisin, J.E.; Grabiner, M.D. EMG variability during maximum voluntary isometric and anisometric contractions is reduced using spatial averaging. J. Electromyogr. Kinesiol. 1998, 8, 45–50. [Google Scholar] [CrossRef]
- Watanabe, I.; Miyamoto, M.; Nakagawa, H.; Saito, K. Ergonomic advantage of pistol-grip endoscope in the ENT practice. Laryngoscope Investig. Otolaryngol. 2021, 6, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Petitjean, M.; Maton, B.; Cnockaert, J.C. Evaluation of human dynamic contraction by phonomyography. J. Appl. Physiol. 1992, 73, 2567–2573. [Google Scholar] [CrossRef] [PubMed]
- Schulte, E.; Ciubotariu, A.; Arendt-Nielsen, L.; Disselhorst-Klug, C.; Rau, G.; Graven-Nielsen, T. Experimental muscle pain increases trapezius muscle activity during sustained isometric contractions of arm muscles. Clin. Neurophysiol. 2004, 115, 1767–1778. [Google Scholar] [CrossRef]
- Guevel, A.; Hogrel, J.Y.; Marini, J.F. Fatigue of elbow flexors during repeated flexion-extension cycles: Effect of movement strategy. Int. J. Sports Med. 2000, 21, 492–498. [Google Scholar] [CrossRef]
- Pratt, J.; Hoffman, A.; Grainger, A.; Ditroilo, M. Forearm electromyographic activity during the deadlift exercise is affected by grip type and sex. J. Electromyogr. Kinesiol. 2020, 53. [Google Scholar] [CrossRef]
- Chalmers, P.N.; Cip, J.; Trombley, R.; Cole, B.J.; Wimmer, M.A.; Romeo, A.A.; Verma, N.N. Glenohumeral function of the long head of the biceps muscle: An electromyographic analysis. Orthop. J. Sport. Med. 2014, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Schmit, B.D.; Rymer, W.Z. Identification of static and dynamic components of reflex sensitivity in spastic elbow flexors using a muscle activation model. Ann. Biomed. Eng. 2001, 29, 330–339. [Google Scholar] [CrossRef]
- Booghs, C.; Baudry, S.; Enoka, R.; Duchateau, J. Influence of neural adjustments and muscle oxygenation on task failure during sustained isometric contractions with elbow flexor muscles. Exp. Physiol. 2012, 97, 918–929. [Google Scholar] [CrossRef]
- Tal’nov, A.N.; Serenko, S.G.; Strafun, S.S.; Kostyukov, A.I. Analysis of the electromyographic activity of human elbow joint muscles during slow linear flexion movements in isotorque conditions. Neuroscience 1999, 90, 1123–1136. [Google Scholar] [CrossRef]
- Rouard, A.H.; Billat, R.P. Influences of sex and level of performance on freestyle stroke: An Electromyography and kinematic study. Int. J. Sports Med. 1990, 11, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Kasprisin, J.E.; Grabiner, M.D. Joint angle-dependence of elbow flexor activation levels during isometric and isokinetic maximum voluntary contractions. Clin. Biomech. 2000, 15, 743–749. [Google Scholar] [CrossRef]
- Tal’Nov, A.N.; Cherkassky, V.L.; Kostyukov, A.I. Movement-related and steady-state electromyographic activity of human elbow flexors in slow transition movements between two equilibrium states. Neuroscience 1997, 79, 923–933. [Google Scholar] [CrossRef]
- Barry, B.K.; Riek, S.; Carson, R.G. Muscle coordination during rapid force production by young and older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005, 60, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Bilodeau, M.; Cincera, M.; Arsenault, A.B.; Gravel, D. Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions. J. Electromyogr. Kinesiol. 1997, 7, 87–96. [Google Scholar] [CrossRef]
- Butler, J.E.; Petersen, N.C.; Herbert, R.D.; Gandevia, S.C.; Taylor, J.L. Origin of the low-level EMG during the silent period following transcranial magnetic stimulation. Clin. Neurophysiol. 2012, 123, 1409–1414. [Google Scholar] [CrossRef]
- Sarcher, A.; Brochard, S.; Hug, F.; Letellier, G.; Raison, M.; Perrouin-Verbe, B.; Sangeux, M.; Gross, R. Patterns of upper limb muscle activation in children with unilateral spastic cerebral palsy: Variability and detection of deviations. Clin. Biomech. 2018, 59, 85–93. [Google Scholar] [CrossRef]
- James, C.; MacKenzie, L.; Capra, M. Quantification of the safe maximal lift in functional capacity evaluations: Comparison of muscle recruitment using SEMG and therapist observation. J. Occup. Rehabil. 2013, 23, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Siemionow, V.; Yue, G.H.; Ranganathan, V.K.; Liu, J.Z.; Sahgal, V. Relationship between motor activity-related cortical potential and voluntary muscle activation. Exp. Brain Res. 2000, 133, 303–311. [Google Scholar] [CrossRef]
- Bell, D.G.; Tikuisis, P.; Jacobs, I. Relative intensity of muscular contraction during shivering. J. Appl. Physiol. 1992, 72, 2336–2342. [Google Scholar] [CrossRef]
- Grant, M.C.; Watson, H.; Baker, J.S. Assessment of the upper body contribution to multiple-sprint cycling in men and women. Clin. Physiol. Funct. Imaging 2015, 35, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Martin, P.G.; Gandevia, S.C.; Taylor, J.L. Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles. J. Appl. Physiol. 2007, 103, 560–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.; Hsyu, M.C.; Cheng, H.Y.; Hsieh, S.H.; Lin, C.C. Synergic co-activation in forearm pronation. Ann. Biomed. Eng. 2008, 36, 2002–2018. [Google Scholar] [CrossRef]
- Todd, G.; Petersen, N.T.; Taylor, J.L.; Gandevia, S.C. The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Exp. Brain Res. 2003, 150, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Søgaard, K.; Gandevia, S.C.; Todd, G.; Petersen, N.T.; Taylor, J.L. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J. Physiol. 2006, 573, 511–523. [Google Scholar] [CrossRef]
- Kang, T.; Seo, Y.; Park, J.; Dong, E.; Seo, B.; Han, D. The effects of elbow joint angle change on the elbow flexor muscle activation in pulley with weight exercise. J. Phys. Ther. Sci. 2013, 25, 1133–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamet, D.; Maton, B. The fatigability of two agonistic muscles in human isometric voluntary submaximal contraction: An EMG study. Eur. J. Appl. Physiol. Occup. Physiol. 1989, 58, 361–368. [Google Scholar] [CrossRef]
- Bechtel, R.; Caldwell, G.E. The influence of task and angle on torque production and muscle activity at the elbow. J. Electromyogr. Kinesiol. 1994, 4, 195–204. [Google Scholar] [CrossRef]
- Caufriez, B.; Dugailly, P.-M.; Brassinne, E.; Schuind, F. The Role of the Muscle Brachioradialis in Elbow Flexion: An Electromyographic Study. J. Hand Surg. Asian-Pacific Vol. 2018, 23, 102–110. [Google Scholar] [CrossRef]
- Turpin, N.A.; Costes, A.; Moretto, P.; Watier, B. Upper limb and trunk muscle activity patterns during seated and standing cycling. J. Sports Sci. 2017, 35, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Caldiroli, D.; Molteni, F.; Sommariva, A.; Frittoli, S.; Guanziroli, E.; Cortellazzi, P.; Orena, E.F. Upper limb muscular activity and perceived workload during laryngoscopy: Comparison of Glidescope® and Macintosh laryngoscopy in manikin: An observational study. Br. J. Anaesth. 2014, 112, 563–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouard, A.H.; Clarys, J.P. Cocontraction in the elbow and shoulder muscles during rapid cyclic movements in an aquatic environment. J. Electromyogr. Kinesiol. 1995, 5, 177–183. [Google Scholar] [CrossRef]
- Mountjoy, K.; Morin, E.; Hashtrudi-Zaad, K. Use of the fast orthogonal search method to estimate optimal joint angle for upper limb hill-muscle models. IEEE Trans. Biomed. Eng. 2010, 57, 790–798. [Google Scholar] [CrossRef]
- Hug, F.; Nordez, A.; Guével, A. Can the electromyographic fatigue threshold be determined from superficial elbow flexor muscles during an isometric single-joint task? Eur. J. Appl. Physiol. 2009, 107, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Chaytor, C.P.; Forman, D.; Byrne, J.; Loucks-Atkinson, A.; Power, K.E. Changes in muscle activity during the flexion and extension phases of arm cycling as an effect of power output are muscle-specific. PeerJ 2020, 8. [Google Scholar] [CrossRef]
- Mccormick, M.C.; Watson, H.; Simpson, A.; Kilgore, L.; Baker, J.S. Surface electromyographic activities of upper body muscles during high-intensity cycle ergometry. Res. Sport. Med. 2014, 22, 124–135. [Google Scholar] [CrossRef]
- Sonne, M.W.; Hodder, J.N.; Wells, R.; Potvin, J.R. Force time-history affects fatigue accumulation during repetitive handgrip tasks. J. Electromyogr. Kinesiol. 2015, 25, 130–135. [Google Scholar] [CrossRef]
- Matthews, P.B.; Muir, R.B. Comparison of electromyogram spectra with force spectra during human elbow tremor. J. Physiol. 1980, 302, 427–441. [Google Scholar] [CrossRef] [Green Version]
- Myers, C.M.; Kim, J.S.; Florian, J.P. Consecutive, resting, long-duration hyperoxic exposures alter neuromuscular responses during maximal strength exercises in trained men. Front. Physiol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Myers, C.M.; Kim, J.-S.; McCully, K.K.; Florian, J.P. Effects of Repeated, Long-Duration Hyperoxic Water Immersions on Neuromuscular Endurance in Well-Trained Males. Front. Physiol. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, C.M.; Kim, J.S.; Musilli, M.; McCully, K.; Florian, J.P. Effects of resting, consecutive, long-duration water immersions on neuromuscular endurance in well-trained males. Front. Physiol. 2018, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, P.R.; Komi, P.V. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Jianguo, C.; Xu, W. The application of wavelet transform and neural network to surface electromyographic signals for pattern recognition. Prceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Shanghai, China, 17–18 January 2006; Volume 7, pp. 5009–5012. [Google Scholar] [CrossRef]
- Koleini Mamaghani, N.; Shimomura, Y.; Iwanaga, K.; Katsuura, T. Mechanomyogram and electromyogram responses of upper limb during sustained isometric fatigue with varying shoulder and elbow postures. J. Physiol. Anthropol. Appl. Human Sci. 2002, 21, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Mamaghani, N.K.; Shimomura, Y.; Iwanaga, K.; Katsuura, T. Changes in surface emg and acoustic myogram parameters during static fatiguing contractions until exhaustion: Influence of elbow joint angles. J. Physiol. Anthropol. Appl. Human Sci. 2001, 20, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, P.B.C.; Watson, J.D.G. Effect of vibrating agonist or antagonist muscle on the reflex response to sinusoidal displacement of the human forearm. J. Physiol. 1981, 321, 297–316. [Google Scholar] [CrossRef]
- Penzer, F.; Cabrol, A.; Baudry, S.; Duchateau, J. Comparison of muscle activity and tissue oxygenation during strength training protocols that differ by their organisation, rest interval between sets, and volume. Eur. J. Appl. Physiol. 2016, 116, 1795–1806. [Google Scholar] [CrossRef]
- Pinzur, M.S.; Wehner, J.; Kett, N.; Trilla, M. Brachioradialis to finger extensor tendon transfer to achieve hand opening in acquired spasticity. J. Hand Surg. Am. 1988, 13, 549–552. [Google Scholar] [CrossRef]
- Praagman, M.; Veeger, H.E.J.; Chadwick, E.K.J.; Colier, W.N.J.M.; Van Der Helm, F.C.T. Muscle oxygen consumption, determined by NIRS, in relation to external force and EMG. J. Biomech. 2003, 36, 905–912. [Google Scholar] [CrossRef]
- Serrau, V.; Driss, T.; Vandewalle, H.; Behm, D.G.; Lesne-Chabran, E.; Le Pellec-Muller, A. Muscle activation of the elbow flexor and extensor muscles during self-resistance exercises: Comparison of unilateral maximal cocontraction and bilateral self-resistance. J. Strength Cond. Res. 2012, 26, 2468–2477. [Google Scholar] [CrossRef] [PubMed]
- Suplino, L.O.; Sommer, L.F.; Forner-Cordero, A. EMG-Based Control in a Test Platform for Exoskeleton with One Degree of Freedom. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; Volume 100, pp. 5366–5369. [Google Scholar] [CrossRef]
- Tarata, M.T. Mechanomyography versus electromyography, in monitoring the muscular fatigue. Biomed. Eng. Online 2003, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Theeuwen, M.; Gielen, C.C.A.M.; Miller, L.E. The relative activation of muscles during isometric contractions and low-velocity movements against a load. Exp. Brain Res. 1994, 101, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Harwood, B.; Cornett, K.M.D.; Edwards, D.L.; Brown, R.E.; Jakobi, J.M. The effect of tendon vibration on motor unit activity, intermuscular coherence and force steadiness in the elbow flexors of males and females. Acta Physiol. 2014, 211, 597–608. [Google Scholar] [CrossRef]
- Thepaut-Mathieu, C.; Maton, B. The flexor function of the m. pronator teres in man: A quantitative electromyographic study. Eur. J. Appl. Physiol. Occup. Physiol 1985, 54, 116–121. [Google Scholar] [CrossRef]
- Thepaut-Mathieu, C.; Van Hoecke, J.; Maton, B. Myoelectrical and mechanical changes linked to length specificity during isometric training. J. Appl. Physiol. 1988, 64, 1500–1505. [Google Scholar] [CrossRef]
- Zeng, H.; Wei, N.; Yue, S.; Tian, X.; Li, K. Muscle Synergy for Hand Motions Based on Electromyography Analysis. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; Volume 2018, pp. 2052–2055. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Liu, S.L.; Feng, Q.M.; Gao, J.Q.; Zhang, Q. Correlative Evaluation of Mental and Physical Workload of Laparoscopic Surgeons Based on Surface Electromyography and Eye-tracking Signals. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef]
- Lee, H.C.; Kuo, F.L.; Lin, Y.N.; Liou, T.H.; Lin, J.C.; Huang, S.W. Effects of robot-assisted rehabilitation on hand function of people with stroke: A randomized, crossover-controlled, assessor-blinded study. Am. J. Occup. Ther. 2021, 75, 1–11. [Google Scholar] [CrossRef]
- Hawkes, D.H.; Alizadehkhaiyat, O.; Fisher, A.C.; Kemp, G.J.; Roebuck, M.M.; Frostick, S.P. Normal shoulder muscular activation and co-ordination during a shoulder elevation task based on activities of daily living: An electromyographic study. J. Orthop. Res. 2012, 30, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.R.; Hong, S.M.; Shin, Y.A. Effects of resistance training on muscle strength, endurance, and motor unit according to ciliary neurotrophic factor polymorphism in male college students. J. Sport. Sci. Med. 2014, 13, 680–688. [Google Scholar]
- Issa, N.P.; Frank, S.; Roos, R.P.; Soliven, B.; Towle, V.L.; Rezania, K. Intermuscular coherence in amyotrophic lateral sclerosis: A preliminary assessment. Muscle Nerve 2017, 55, 862–868. [Google Scholar] [CrossRef]
- Iwamuro, B.T.; Cruz, E.G.; Connelly, L.L.; Fischer, H.C.; Kamper, D.G. Effect of a Gravity-Compensating Orthosis on Reaching After Stroke: Evaluation of the Therapy Assistant WREX. Arch. Phys. Med. Rehabil. 2008, 89, 2121–2128. [Google Scholar] [CrossRef] [PubMed]
- Kahn, J.F.; Jouanin, J.C.; Bussièe, J.L.; Tinet, E.; Avrillier, S.; Ollivier, J.P.; Monod, H. The isometric force that induces maximal surface muscle deoxygenation. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 183–187. [Google Scholar] [CrossRef]
- Levy, A.S.; Kelly, B.T.; Lintner, S.A.; Osbahr, D.C.; Speer, K.P. Function of the long head of the biceps at the shoulder: Electromyographic analysis. J. Shoulder Elb. Surg. 2001, 10, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Wie, N.; Li, K. Construction of Multiplex Muscle Network for Precision Pinch Force Control. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2018; Volume 2020, pp. 3269–3272. [Google Scholar] [CrossRef]
- Yoon, T.; Schlinder-Delap, B.; Hunter, S.K. Fatigability and recovery of arm muscles with advanced age for dynamic and isometric contractions. Exp. Gerontol. 2013, 48, 259–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padulo, J.; Di Giminiani, R.; Iacono Dello, A.; Zagatto, A.M.; Migliaccio, G.M.; Grgantov, Z.; Ardigò, L.P. Lower arm muscle activation during indirect-localized vibration: The influence of skill levels when applying different acceleration loads. Front. Physiol. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- von Werder, S.C.F.A.; Disselhorst-Klug, C. The role of biceps brachii and brachioradialis for the control of elbow flexion and extension movements. J. Electromyogr. Kinesiol. 2016, 28, 67–75. [Google Scholar] [CrossRef]
- Sarcher, A.; Raison, M.; Leboeuf, F.; Perrouin-Verbe, B.; Brochard, S.; Gross, R. Pathological and physiological muscle co-activation during active elbow extension in children with unilateral cerebral palsy. Clin. Neurophysiol. 2017, 128, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Marcolin, G.; Panizzolo, F.A.; Petrone, N.; Moro, T.; Grigoletto, D.; Piccolo, D.; Paoli, A. Differences in electromyographic activity of biceps brachii and brachioradialis while performing three variants of curl. PeerJ 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; von Werder, S.C.F.A.; Lassek, A.K.; Disselhorst-Klug, C. Time-frequency coherence of categorized sEMG data during dynamic contractions of biceps, triceps, and brachioradialis as an approach for spasticity detection. Med. Biol. Eng. Comput. 2019, 57, 703–713. [Google Scholar] [CrossRef]
- Seghers, J.; Spaepen, A.; Delecluse, C.; Colman, V. Habitual level of physical activity and muscle fatigue of the elbow flexor muscles in older men. Eur. J. Appl. Physiol. 2003, 89, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Hostens, I.; Seghers, J.; Spaepen, A.; Ramon, H. Validation of the wavelet spectral estimation technique in Biceps Brachii and Brachioradialis fatigue assessment during prolonged low-level static and dynamic contractions. J. Electromyogr. Kinesiol. 2004, 14, 205–215. [Google Scholar] [CrossRef]
- Neto, O.P.; Magini, M.; Pacheco, M.T.T. Electromyographic study of a sequence of Yau-Man Kung Fu palm strikes with and without impact. J. Sport. Sci. Med. 2007, 6, 23–27. [Google Scholar]
- Doheny, E.P.; Lowery, M.M.; FitzPatrick, D.P.; O’Malley, M.J. Effect of elbow joint angle on force-EMG relationships in human elbow flexor and extensor muscles. J. Electromyogr. Kinesiol. 2008, 18, 760–770. [Google Scholar] [CrossRef]
- Bonnefoy, A.; Louis, N.; Gorce, P. Muscle activation during a reach-to-grasp movement in sitting position: Influence of the distance. J. Electromyogr. Kinesiol. 2009, 19, 269–275. [Google Scholar] [CrossRef]
- Gerževič, M.; Strojnik, V.; Jarm, T. Differences in Muscle Activation Between Submaximal and Maximal 6-Minute Rowing Tests. J. Strength Cond. Res. 2011, 25, 2470–2481. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, J.; Morin, E.; Mousavi, P.; Hashtrudi-Zaad, K. Surface EMG force modeling with joint angle based calibration. J. Electromyogr. Kinesiol. 2013, 23, 416–424. [Google Scholar] [CrossRef]
- Santhome, L.D.O.; Peixoto, L.R.T.; Guimaraes, C.M.; da Rocha, A.F.; Soares, F.A.; Goncalves, C.A. Electromyographic study in 5 muscles during an isometric fatiguing protocol. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3592–3595. [Google Scholar]
- Baadjou, V.A.E.; Van Eijsden-Besseling, M.D.F.; Verbunt, J.A.M.C.F.; De Bie, R.A.; Geers, R.P.J.; Smeets, R.J.E.M.; Seelen, H.A.M. Playing the clarinet: Influence of body posture on muscle activity and sound quality. Med. Probl. Perform. Art. 2017, 32, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Dickie, J.A.; Faulkner, J.A.; Barnes, M.J.; Lark, S.D. Electromyographic analysis of muscle activation during pull-up variations. J. Electromyogr. Kinesiol. 2017, 32, 30–36. [Google Scholar] [CrossRef]
- Z’graggen, W.J.; Trautmann, J.P.; Boërio, D.; Bostock, H. Muscle velocity recovery cycles: Comparison between surface and needle recordings. Muscle and Nerve 2016, 53, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Mogk, J.P.M.; Keir, P.J. Crosstalk in surface electromyography of the proximal forearm during gripping tasks. J. Electromyogr. Kinesiol. 2003, 13, 63–71. [Google Scholar] [CrossRef]
- Ervilha, U.F.; Farina, D.; Arendt-Nielsen, L.; Graven-Nielsen, T. Experimental muscle pain changes motor control strategies in dynamic contractions. Exp. Brain Res. 2005, 164, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Laßek, A.K.; von Werder, S.C.A.F.; Werner, C.J.; Disselhorst-Klug, C. Introduction of a procedure to objectively quantify spastic movement impairment during freely performed voluntary movements. J. Electromyogr. Kinesiol. 2019, 48, 44–52. [Google Scholar] [CrossRef]
- Mayer, N.H.; Whyte, J.; Wannstedt, G.; Ellis, C.A. Comparative Impact of 2 Botulinum Toxin Injection Techniques for Elbow Flexor Hypertonia. Arch. Phys. Med. Rehabil. 2008, 89, 982–987. [Google Scholar] [CrossRef]
- Oliveira, A.S.; Gonçalves, M. Positioning During Resistance Elbow Flexor Exercise Affects Electromyographic Activity, Heart Rate, and Perceived Exertion. J. Strength Cond. Res. 2009, 23, 854–862. [Google Scholar] [CrossRef]
- Oliveira, A.S.C.; Gonçalves, M. EMG amplitude and frequency parameters of muscular activity: Effect of resistance training based on electromyographic fatigue threshold. J. Electromyogr. Kinesiol 2009, 19, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Staudenmann, D.; Rudroff, T.; Enoka, R.M. Pronation-supination torque and associated electromyographic activity varies during a sustained elbow flexor contraction but does not influence the time to task failure. Muscle and Nerve 2009, 40, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Thiebaud, R.; Loenneke, J.P.; Fahs, C.A.; Kim, D.; Ye, X.; Abe, T.; Nosaka, K.; Bemben, M.G. Muscle damage after low-intensity eccentric contractions with blood flow restriction. Acta Physiol. Hung. 2014, 101, 150–157. [Google Scholar] [CrossRef]
- Von Werder, S.C.F.A.; Kleiber, T.; Disselhorst-Klug, C. A method for a categorized and probabilistic analysis of the surface electromyogram in dynamic contractions. Front. Physiol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Calder, K.M.; Stashuk, D.W.; McLean, L. Physiological characteristics of motor units in the brachioradialis muscle across fatiguing low-level isometric contractions. J. Electromyogr. Kinesiol. 2008, 18, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Krogh-Lund, C.; Jorgensen, K. Myo-electric fatigue manifestations revisited: Power spectrum, conduction velocity, and amplitude of human elbow flexor muscles during isolated and repetitive endurance contractions at 30% maximal voluntary contraction. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Krogh-Lund, C. Myo-electric fatigue and force failure from submaximal static elbow flexion sustained to exhaustion. / Fatigue myoelectrique et manque de force de la flexion statique sousmaximale du coude maintenue jusqu ’ a epuisement. Eur. J. Appl. Physiol. Occup. Physiol 1993, 67, 389–401. [Google Scholar] [CrossRef]
- Krogh-Lund, C.; Jørgensen, K. Modification of myo-electric power spectrum in fatigue from 15% maximal voluntary contraction of human elbow flexor muscles, to limit of endurance: Reflection of conduction velocity variation and/or centrally mediated mechanisms? Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Linnamo, V.; Strojnik, V.; Komi, P.V. Maximal force during eccentric and isometric actions at different elbow angles. Eur. J. Appl. Physiol. 2006, 96, 672–678. [Google Scholar] [CrossRef]
- Rendos, N.K.; Heredia Vargas, H.M.; Alipio, T.C.; Regis, R.C.; Romero, M.A.; Signorile, J.F. Differences in muscle activity during cable resistance training are influenced by variations in handle types. J. Strength Cond. Res. 2016, 30, 2001–2009. [Google Scholar] [CrossRef]
- Gaudet, G.; Raison, M.; Maso, F.D.; Achiche, S.; Begon, M. Intra- and Intersession Reliability of Surface Electromyography on Muscles Actuating the Forearm During Maximum Voluntary Contractions. J. Appl. Biomech. 2016, 32, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, D.J.; Dawson, B.; Donnelly, C.J.; Peeling, P. Muscle activation, blood lactate, and perceived exertion responses to changing resistance training programming variables. Eur. J. Sport Sci. 2016, 16, 536–544. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, L.W.; Gallwey, T.J. Upper-limb surface electro-myography at maximum supination and pronation torques: The effect of elbow and forearm angle. J. Electromyogr. Kinesiol. 2002, 12, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Page, C.; Backus, S.I.; Lenhoff, M.W. Electromyographic activity in stiff and normal elbows during elbow flexion and extension. J. Hand Ther. 2003, 16, 5–11. [Google Scholar] [CrossRef]
- Rong, Y.; Han, X.; Hao, D.; Cao, L.; Wang, Q.; Li, M.; Duan, L.; Zeng, Y. Applying support vector regression analysis on grip force level-related corticomuscular coherence. J. Comput. Neurosci. 2014, 37, 281–291. [Google Scholar] [CrossRef]
- Caldwell, G.E.; Jamison, J.C.; Lee, S. Amplitude and frequency measures of surface electromyography during dual task elbow torque production. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Dongés, S.C.; Boswell-Ruys, C.L.; Butler, J.E.; Taylor, J.L. The effect of paired corticospinal–motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: An experimental study. Spinal Cord 2019, 57, 796–804. [Google Scholar] [CrossRef]
- Jamison, J.C.; Caldwell, G.E. Muscle synergies and isometric torque production: Influence of supination and pronation level on elbow flexion. J. Neurophysiol. 1993, 70, 947–960. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Nakano, M.; Sugimura, H.; Kurayama, H.; Tahata, K.; Nakamura, J.; Shiozawa, K. Effects of endodontic instrument handle diameter on electromyographic activity of forearm and hand muscles. Int. Endod. J. 2001, 34, 100–106. [Google Scholar] [CrossRef]
- Hill, E.; Housh, T.; Smith, C.; Schmidt, R.; Johnson, G. Muscle- and Mode-Specific Responses of the Forearm Flexors to Fatiguing, Concentric Muscle Actions. Sports 2016, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Ranavolo, A.; Chini, G.; Silvetti, A.; Mari, S.; Serrao, M.; Draicchio, F. Myoelectric manifestation of muscle fatigue in repetitive work detected by means of miniaturized sEMG sensors. Int. J. Occup. Saf. Ergon. 2018, 24, 464–474. [Google Scholar] [CrossRef]
- Hill, E.C.; Housh, T.J.; Smith, C.M.; Schmidt, R.J.; Johnson, G.O. Gender- And muscle-specific responses during fatiguing exercise. J. Strength Cond. Res. 2018, 32, 1471–1478. [Google Scholar] [CrossRef]
- Rudroff, T.; Staudenmann, D.; Enoka, R.M. Electromyographic measures of muscle activation and changes in muscle architecture of human elbow flexors during fatiguing contractions. J. Appl. Physiol. 2008, 104, 1720–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, M.W.R.; Keir, P.J. Posture and hand load alter muscular response to sudden elbow perturbations. J. Electromyogr. Kinesiol. 2012, 22, 191–198. [Google Scholar] [CrossRef]
- Uzun, S.; Pourmoghaddam, A.; Hieronymus, M.; Thrasher, T.A. Evaluation of muscle fatigue of wheelchair basketball players with spinal cord injury using recurrence quantification analysis of surface EMG. Eur. J. Appl. Physiol. 2012, 112, 3847–3857. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tong, K.Y.; Hu, X.L.; Hung, L.K.; Koo, T.K.K. Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke. Clin. Biomech. 2009, 24, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Lampropoulou, S.I.; Nowicky, A.V. The effect of transcranial direct current stimulation on perception of effort in an isolated isometric elbow flexion task. Motor Control 2013, 17, 412–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlo, A.; Manca, M.; Cavazza, S.; Ferraresi, G.; Marchi, P. Crosstalk in surface EMG signals of the brachioradialis muscle. Gait Posture 2009, 29, e26. [Google Scholar] [CrossRef]
- Weeks, D.L.; Aubert, M.P.; Feldman, A.G.; Levin, M.F. One-trial adaptation of movement to changes in load. J. Neurophysiol. 1996, 75, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Zipp, P. Recommendations for the standardization of lead positions in surface electromyography. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 50, 41–54. [Google Scholar] [CrossRef]
- Afsharipour, B.; Soedirdjo, S.; Merletti, R. Two-dimensional surface EMG: The effects of electrode size, interelectrode distance and image truncation. Biomed. Signal Process. Control 2019, 49, 298–307. [Google Scholar] [CrossRef]
- Merletti, R.; Muceli, S. Tutorial. Surface EMG detection in space and time: Best practices. J. Electromyogr. Kinesiol. 2019, 49, 102363. [Google Scholar]
- Merletti, R.; Campanini, I.; Rymer, W.Z.; Disselhorst-Klug, C. Editorial: Surface Electromyography: Barriers Limiting Widespread Use of sEMG in Clinical Assessment and Neurorehabilitation; Merletti, R., Disselhorst-Klug, C., Rymer, W.Z., Campanini, I., Eds.; Frontiers Media SA: Lausanne, Switzerland, 2021; Volume 12, ISBN 9782889666164. [Google Scholar]
- Talib, I.; Sundaraj, K.; Lam, C.K.; Hussain, J.; Ali, M.A. A review on crosstalk in myographic signals. Eur. J. Appl. Physiol. 2019, 119, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Merletti, R. Teaching Modules and On-Line Courses. Available online: https://www.robertomerletti.it/en/emg/material/teaching/ (accessed on 28 September 2021).
- Kuiken, T.A.; Lowery, M.M.; Stoykov, N.S. The effect of subcutaneous fat on myoelectric signal amplitude and cross-talk. Prosthet. Orthot. Int. 2003, 27, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germer, C.M.; Farina, D.; Elias, L.A.; Nuccio, S.; Hug, F.; Del Vecchio, A. Surface EMG cross talk quantified at the motor unit population level for muscles of the hand, thigh, and calf. J. Appl. Physiol. 2021, 131. [Google Scholar] [CrossRef]
- Kleine, B.U.; Stegeman, D.F.; Mund, D.; Anders, C. Influence of motoneuron firing synchronization on SEMG characteristics in dependence of electrode position. J. Appl. Physiol. 2001, 91, 1588–1599. [Google Scholar] [CrossRef] [Green Version]
- Campanini, I.; Merlo, A.; Degola, P.; Merletti, R.; Vezzosi, G.; Farina, D. Effect of electrode location on EMG signal envelope in leg muscles during gait. J. Electromyogr. Kinesiol. 2007, 17, 515–526. [Google Scholar] [CrossRef]
- Merlo, A.; Campanini, I. Impact of instrumental analysis of stiff knee gait on treatment appropriateness and associated costs in stroke patients. Gait Posture 2019, 72, 195–201. [Google Scholar] [CrossRef]
- Merlo, A.; Campanini, I. Counter reply: Impact of instrumental analysis of stiff knee gait on treatment appropriateness and associated costs in stroke patients. Gait Posture 2021, 83, 230–231. [Google Scholar] [CrossRef]
- Campanini, I.; Cosma, M.; Manca, M.; Merlo, A. Added Value of Dynamic EMG in the Assessment of the Equinus and the Equinovarus Foot Deviation in Stroke Patients and Barriers Limiting Its Usage. Front. Neurol. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Merlo, A.; Montecchi, M.G.; Lombardi, F.; Vata, X.; Musi, A.; Lusuardi, M.; Merletti, R.; Campanini, I. Monitoring involuntary muscle activity in acute patients with upper motor neuron lesion by wearable sensors: A feasibility study. Sensors 2021, 21. [Google Scholar] [CrossRef]
- Mazzoli, D.; Giannotti, E.; Manca, M.; Longhi, M.; Prati, P.; Cosma, M.; Ferraresi, G.; Morelli, M.; Zerbinati, P.; Masiero, S.; et al. Electromyographic activity of the vastus intermedius muscle in patients with stiff-knee gait after stroke. A retrospective observational study. Gait Posture 2018, 60, 273–278. [Google Scholar] [CrossRef]
- Merletti, R.; Farina, D.; Gazzoni, M.; Merlo, A.; Ossola, P.; Rainoldi, A. Surface electromyography: A window on the muscle, a glimpse on the central nervous system. Eura. Medicophys. 2001, 37, 57–68. [Google Scholar]
- International Society of Electrophysiology and Kinesiology ISEK-JEK Tutorials. Available online: https://isek.org/isek-jek-tutorials/ (accessed on 29 September 2021).
Term | Definition | Effect on sEMG Signal |
---|---|---|
sEMG sensor 1 (often confused with the commercial term “electrode”) | System carrying and including the electrode(s) and their fixation system (e.g., adhesive rings) | Adhesive disks or straps might limit skin elasticity and create artifacts due to micromovements. |
Electrode (or electrode sensitive area) | Conductive surface in contact with the skin (dry or wet, e.g., gel) | The voltage distribution on the skin under the electrode takes a single instantaneous value over the entire electrode (average in space). causing lowpass filtering. |
sEMG sensor diameter or size | Diameter or size of the whole sensor applied over the skin | Large sEMG sensors require wide inter-electrode distance |
Center to center inter-electrode distance (IED) | Distance between electrode centers | Larger IED results in larger detection volume and larger sEMG signal, which is often incorrectly considered a good thing, with the risk of crosstalk |
Detection volume | Volume and shape of the region of 3D space containing motor units whose potential can be detected | Region containing motor units whose potentials are above the noise level. |
Crosstalk | Signal detected on the target muscle but generated by the motor units of another muscle | When nearby muscles are active the muscle of interest seems to be active, leading to wrong conclusions/decisions.Crosstalk may critically affect clinical decision making |
Innervation zone (IZ) | Physical region where the central (alpha-motor neuron terminations) and peripheral (muscle fibers) systems connect through special synapses [14] | During dynamic contractions, the relative movement of the muscle with respect to the skin (that is the electrode system) determines a strong alteration (e.g., reduction) of the signal amplitude when the IZ shifts under the electrode pair [14] |
Author, Year | Criterion | Sensor Location |
---|---|---|
Basmajian, 1983 [16] | Minimum crosstalk area, determined experimentally | “With the hand pronated and the elbow bent, draw a line from the ¾ point of the elbow skin crease to the styloid process of the radius (in the snuff-box). Place both electrodes centered in an oval area approximately 25–30% the distance from the elbow skin crease to the styloid process of the radius”. This placement refers exclusively to miniaturized electrodes, i.e., with a diameter of a few millimeters, placed next to each other or with a minimum center-to-center distance. |
Cram, 1998 [10] | Muscle anatomy | “Palpate the muscle mass just distal to the elbow while resisting elbow flexion with the wrist in the neutral position (thumb up). Two active electrodes, 2 cm apart, are placed approximately 4 cm distally from the lateral epicondyle of the elbow on the medial fleshy mass that covers that area, so that they run parallel to the muscle fibers.” |
Barbero, 2012 [14] | Away from the innervation zone | With the elbow extended, draw “a line from the styloid process to a midpoint on the line between the lateral and medial epicondyles. Optimal electrode site: Between 32% and 100% of this line”, starting from the epicondyle (i.e., avoid the very proximal part of the muscle belly, where the innervation zone is most likely located). No indication on electrode size is provided but small electrodes are assumed. |
Electrode Location Indicated by Authors | Number of Studies | Reference Numbers | Electrode or sEMG Sensor Diameter or Size, mm | Center to Center Inter-Electrode Distance, mm | Crosstalk Mentioned, No. of Studies | Applications (no. of Studies) | Subjects Assessed (No. of Studies) |
---|---|---|---|---|---|---|---|
Muscle mid-belly 1 | 55 | [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78] | 2–35, or 10 × 3 bars | 6–50 | 7 | physiology (36), sport (6), EMG methodology (3), ergonomics (3), signal processing (3), pathophysiology (2), modelling (2) | healthy adults (51), neurologic adults (3), children with cerebral palsy (1) |
Not specified | 25 | [79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103] | 4–22.5 or 1 × 10 bars | 1.7–30 | 4 | physiology (13), signal processing (4), clinical (3), sport (2), pathophysiology (1), ergonomics (1), modeling (1) | healthy adults (21), neurologic adults (4) |
SENIAM cited, while SENIAM does not provide indications for BRD | 16 | [6,8,104,105,106,107,108,109,110,111,112,113,114,115,116,117] | 4–40, or 10 × 2 bars | 2–50 | 3 | physiology (7), pathophysiology (1), sport (3), signal processing (3), modelling (1), EMG methodology (1) | healthy adults (14), neurologic adults (1), children with cerebral palsy (1) |
anatomical locations provided, without references to bibliography-2 | 12 | [118,119,120,121,122,123,124,125,126,127,128,129] | 8–30, or 10 × 1 bars | 10–25 | 2 | physiology (8), ergonomics (1), pathophysiology (1), clinical (1), crosstalk assessment (1) | healthy adults (10), neurologic adults (2) |
Motor point based | 6 | [130,131,132,133,134,135] | 4–30 | 15–20 | 2 | physiology (5), sport (1) | healthy adults (6), |
Delagi and Perotto 1974 cited, while it provides indications for indwelling EMG only | 5 | [136,137,138,139,140] | 10–34 | 20–50 | 2 | physiology (1), pathophysiology (1), EMG methodology (1), sport (1), signal processing (1) | healthy adults (4), orthopedic adults (1) |
Figure provided | 5 | [2,141,142,143,144] | 2–na 3 | 12–na | 2 | physiology (2), ergonomics (1), clinical (1), EMG methodology (1) | healthy adults (4), neurologic adults (1) |
Barbero 2012 | 3 | [145,146,147] | 4–10 | 20–30 | 0 | physiology (2), ergonomics (1) | healthy adults (3) |
Between innervation zone and terminal tendon | 3 | [148,149,150] | 8–na | 20–25 | 2 | physiology (2), pathophysiology (1) | healthy adults (2), neurologic adults (1) |
Cram 1992 | 2 | [151,152] | na | 20 | 1 | physiology (1), modeling (1) | healthy adults (2) |
Basmajian 1983 | 1 | [153] | 2.5 | 10 | 1 | crosstalk assessment (1) | healthy adults (1) |
Minimal crosstalk areas experimentally found | 1 | [154] | 1 × 10 bars | 10 | 1 | physiology (1) | healthy adults (1) |
Task | Electrode Diameter 18 mm, IED 50 mm | Electrode Diameter 18 mm, IED 25 mm | Electrode Diameter 2.5 mm, IED 10 mm |
---|---|---|---|
Wrist extension | 13/13 | 13/16 | 3/15 |
Wrist flexion | 10/14 | 8/16 | 1/15 |
Finger extension | 4/5 | 3/5 | 1/6 |
Total | 27/32 (84%) | 24/35 (69%) | 5/36 (14%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merlo, A.; Bò, M.C.; Campanini, I. Electrode Size and Placement for Surface EMG Bipolar Detection from the Brachioradialis Muscle: A Scoping Review. Sensors 2021, 21, 7322. https://doi.org/10.3390/s21217322
Merlo A, Bò MC, Campanini I. Electrode Size and Placement for Surface EMG Bipolar Detection from the Brachioradialis Muscle: A Scoping Review. Sensors. 2021; 21(21):7322. https://doi.org/10.3390/s21217322
Chicago/Turabian StyleMerlo, Andrea, Maria Chiara Bò, and Isabella Campanini. 2021. "Electrode Size and Placement for Surface EMG Bipolar Detection from the Brachioradialis Muscle: A Scoping Review" Sensors 21, no. 21: 7322. https://doi.org/10.3390/s21217322
APA StyleMerlo, A., Bò, M. C., & Campanini, I. (2021). Electrode Size and Placement for Surface EMG Bipolar Detection from the Brachioradialis Muscle: A Scoping Review. Sensors, 21(21), 7322. https://doi.org/10.3390/s21217322