Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem
Abstract
:1. Introduction
2. ToA-Based Positioning Algorithms
3. Direct Method (DM) for ToA-Based Three-Dimensional (3D) Positioning
3.1. DM Solution with Three Non-Coplanar Anchor Nodes (ANs)
Algorithm 1. Direct method (DM) algorithm with three non-coplanar anchor nodes (ANs) |
1. At time instant , obtain the distance measurements, , ; |
2. Compute two estimates for by Equation (12); 2.1. Reject the estimate that is placed outside the workspace, and consider the other estimate as a solution for ; 2.2. If both estimates lay within the workspace, consider their mean value as a solution for if . If , consider the estimate closer to as a solution for ; 2.3. If , apply a low-pass filter (LPF) to to further reduce the effect of measurement noise, i.e., ; |
3. Compute the estimate of by Equation (10). If , ; |
4. Compute the estimate of by Equation (11). If , ; |
5. Output the final 3D position estimate of the user tag if . If , . |
3.2. DM Solution with Three Horizontally Coplanar ANs
Algorithm 2. DM algorithm with three coplanar ANs |
1. At time instant , obtain the distance measurements, , ; |
2. Compute two estimates for by Equation (15); 2.1. Reject the estimate that is placed outside the workspace, and consider the other estimate as a solution for ; 2.2. If both estimates lay within the workspace, consider their mean value as a solution for if . If , consider the estimate closer to as a solution for ; 2.3. If , apply an LPF to to further reduce the effect of measurement noise, i.e., ; |
3. Compute the estimate of by Equation (13). If , ; |
4. Compute the estimate of by Equation (14). If , ; |
5. Output the final 3D position estimate of the user tag if . If , . |
4. Particle Filtering for ToA-Based 3D Positioning
Algorithm 3. Particle filter (PF) algorithm for ToA-based 3D positioning with three ANs |
0. Initialization: Generate some particles uniformly distributed in the whole workspace. Compute the weight of each particle according to Equation (17), when distance measurements, , are available at the time instant ,. Estimate the 3D position of the user tag, , according to Equation (18). |
1. Prediction: Generate new particles according to Equation (19). |
2. Update: Compute the weight, , of each particle, , according to Equation (17), when distance measurements, , are available at the time instant ,. |
3. State Estimation: Estimate the user tag 3D position, , according to Equation (185). |
Set and repeat from step 1. |
5. Simulation Results
5.1. Three-Dimensional Linear Path
5.2. Horizontal Linear Path
5.3. Horizontal Circular Path
5.4. Remarks
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
5G | Fifth-generation |
6G | Sixth-generation |
AN | Anchor node |
AoA | Angle of arrival |
CF | Closed-form |
CPU | Central processing unit |
CRLB | Cramer–Rao lower bound |
CUDA | Compute unified device architecture |
DM | Direct method |
DME | Distance measurement equipment |
FAA | Federal Aviation Administration |
FoV | Field of view |
GNSS | Global navigation satellite system |
GPS | Global positioning system |
IoT | Internet of things |
LPF | Low-pass filter |
LS | Least-squares |
MIMO | Multiple-input multiple-output |
ML | Maximum likelihood |
mmWave | Millimeter-wave |
N-D | N-dimensional |
NLoS | Non-line of sight |
Probability density function | |
PF | Particle filter |
RAM | Random-access memory |
RFID | Radiofrequency identification |
RHS | Right-hand side |
RMSE | Root mean square error |
RSS | Received signal strength |
RTK | Real-time kinematic |
RToF | Round time of flight |
RTT | Round-trip time |
SNR | Signal-to-noise ratio |
TDoA | Time difference of arrival |
THz | Terahertz |
ToA | Time of Arrival |
TSoA | Time sum of arrival |
TWR | Two-way ranging |
UAS | Unmanned aircraft systems |
UAV | Unmanned aerial vehicle |
UWB | Ultra-wideband |
VLC | Visible light communication |
VTOL | Vertical take-off and landing |
WLS | Weighted least-squares |
WTAE | Weighted trimmed average estimate |
References
- So, H.C. Source Localization: Algorithms and Analysis. In Handbook of Position Location: Theory, Practice, and Advances, 2nd ed.; Zekavat, S.A., Buehrer, R.M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 59–106. [Google Scholar]
- Ilyas, M.; Mahgoub, I. Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems; CRC Press: London, UK, 2005. [Google Scholar]
- Stojmenovic, I. Handbook of Sensor Networks: Algorithms and Architectures; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Liberti, J.C.; Rappaport, T.S. Smart Antennas for Wireless Communications: IS-95 and Third Generation CDMA Applications; Prentice-Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Caffery, J.J. Wireless Location in CDMA Cellular Radio Systems; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA, 2000. [Google Scholar]
- Jagoe, A. Mobile Location Services: The Definitive Guide; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Huang, Y.; Benesty, J. (Eds.) Audio Signal Processing for Next-Generation Multimedia Communication Systems; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA, 2004. [Google Scholar]
- Li, J.; Stoica, P. MIMO Radar Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Carter, G.C. (Ed.) Coherence and Time Delay Estimation: An Applied Tutorial for Research, Development, Test, and Evaluation Engineers; IEEE: New York, NY, USA, 1993. [Google Scholar]
- Reju, V.G.; Khong, A.W.H.; Sulaiman, A.B. Localization of taps on solid surfaces for human-computer touch interfaces. IEEE Trans. Multimedia 2013, 15, 1365–1376. [Google Scholar] [CrossRef]
- Buehrer, R.M.; Venkatesh, S. Fundamentals of Time-of-Arrival-Based Position Location. In Handbook of Position Location: Theory, Practice, and Advances, 2nd ed.; Zekavat, S.A., Buehrer, R.M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 199–236. [Google Scholar]
- Rui, L.; Ho, K.C. Efficient closed-form estimators for multistatic sonar localization. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 600–614. [Google Scholar] [CrossRef]
- Zhuang, Y.; Syed, Z.; Georgy, J.; El-Sheimy, N. Autonomous smartphone-based WiFi positioning system by using access points localization and crowdsourcing. Perv. Mob. Comput. 2015, 18, 118–136. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, W.; Yao, Z.; Li, M.; Liang, Z.; Cao, Z.; Zhang, H.; Huang, Q. Design of a Hybrid Indoor Location System Based on Multi-Sensor Fusion for Robot Navigation. Sensors 2018, 18, 3581. [Google Scholar] [CrossRef] [Green Version]
- Khanh, T.T.; Nguyen, V.; Pham, X.-Q.; Huh, E.-N. Wi-Fi indoor positioning and navigation: A cloudlet-based cloud computing approach. Hum. Cent. Comput. Inf. Sci. 2020, 10, 32. [Google Scholar] [CrossRef]
- Wang, W.; Marelli, D.; Fu, M. Dynamic Indoor Localization Using Maximum Likelihood Particle Filtering. Sensors 2021, 21, 1090. [Google Scholar] [CrossRef]
- Uradzinski, M.; Guo, H.; Liu, X.; Yu, M. Advanced indoor positioning using Zigbee wireless technology. Wirel. Pers. Commun. 2017, 97, 6509–6518. [Google Scholar] [CrossRef]
- Aykaç, M.; Ergun, E.; Noor, B.A. ZigBee-based indoor localization system with the personal dynamic positioning method and modified particle filter estimation. Analog. Integr Circuits Signal Process. 2017, 92, 263–279. [Google Scholar] [CrossRef]
- Zhuang, Y.; Yang, J.; Li, Y.; Qi, L.; El-Sheimy, N. Smartphone-Based Indoor Localization with Bluetooth Low Energy Beacons. Sensors 2016, 16, 596. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Yuan, J.; Liu, H.; Qiu, J. Bluetooth indoor positioning based on RSSI and Kalman filter. Wirel. Pers. Commun. 2017, 96, 4115–4130. [Google Scholar] [CrossRef]
- Perera, C.; Aghaee, S.; Faragher, R.; Harle, R.; Blackwell, A.F. Contextual Location in the Home Using Bluetooth Beacons. IEEE Syst. J. 2019, 13, 2720–2723. [Google Scholar] [CrossRef] [Green Version]
- Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.A.; Al-Khalifa, H.S. Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors 2016, 16, 707. [Google Scholar] [CrossRef]
- Chen, P.; Kuang, Y.; Chen, X. A UWB/Improved PDR Integration Algorithm Applied to Dynamic Indoor Positioning for Pedestrians. Sensors 2017, 17, 2065. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, W.; Li, F.; Shi, Y.; Nie, F.; Huang, Q. UAPF: A UWB Aided Particle Filter Localization For Scenarios with Few Features. Sensors 2020, 20, 6814. [Google Scholar] [CrossRef]
- Saab, S.S.; Nakad, Z.S. A standalone RFID indoor positioning system using passive tags. IEEE Trans. Ind. Electron. 2011, 58, 1961–1970. [Google Scholar] [CrossRef]
- Seol, S.; Lee, E.K.; Kim, W. Indoor mobile object tracking using RFID. Future Gener. Comput. Syst. 2017, 76, 443–451. [Google Scholar] [CrossRef]
- Seco, F.; Jiménez, A.R. Smartphone-Based Cooperative Indoor Localization with RFID Technology. Sensors 2018, 18, 266. [Google Scholar] [CrossRef] [Green Version]
- Tao, B.; Wu, H.; Gong, Z.; Yin, Z.; Ding, H. An RFID-Based Mobile Robot Localization Method Combining Phase Difference and Readability. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1406–1416. [Google Scholar] [CrossRef]
- Li, X.; Zhang, P.; Guo, J.; Wang, J.; Qiu, W. A new method for single-epoch ambiguity resolution with indoor pseudolite positioning. Sensors 2017, 17, 921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witrisal, K.; Meissner, P.; Leitinger, E.; Shen, Y.; Gustafson, C.; Tufvesson, F.; Haneda, K.; Dardari, D.; Molisch, A.F.; Conti, A.; et al. High-Accuracy Localization for Assisted Living: 5G systems will turn multipath channels from foe to friend. IEEE Signal Process. Mag. 2016, 33, 59–70. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Saeed, N.; Al-Naffouri, T.Y.; Alouini, M. Next Generation Terahertz Communications: A Rendezvous of Sensing, Imaging, and Localization. IEEE Comm. Mag. 2020, 58, 69–75. [Google Scholar] [CrossRef]
- Guo, X.; Shao, S.; Ansari, N.; Khreishah, A. Indoor localization using visible light via fusion of multiple classifiers. IEEE Photonics J. 2017, 9, 1–16. [Google Scholar] [CrossRef]
- Lindo, A.; García, E.; Ureña, J.; del Carmen Pérez, M.; Hernández, Á. Multiband waveform design for an ultrasonic indoor positioning system. IEEE Sensors J. 2015, 15, 7190–7199. [Google Scholar] [CrossRef]
- Haigh, S.; Kulon, J.; Partlow, A.; Rogers, P.; Gibson, C. A Robust Algorithm for Classification and Rejection of NLOS Signals in Narrowband Ultrasonic Localization Systems. IEEE Trans. Instrum. Meas. 2019, 68, 646–655. [Google Scholar] [CrossRef]
- Cai, C.; Zheng, R.; Li, J.; Zhu, L.; Pu, H.; Hu, M. Asynchronous Acoustic Localization and Tracking for Mobile Targets. IEEE Internet Things J. 2020, 7, 830–845. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, L.; Qian, K. Indoor acoustic localization: A survey. Hum. Cent. Comput. Inf. Sci. 2020, 10, 2. [Google Scholar] [CrossRef]
- Wang, K.; Nirmalathas, A.; Lim, C.; Alameh, K.; Li, H.; Skafidas, E. Indoor infrared optical wireless localization system with background light power estimation capability. Opt. Express 2017, 25, 22923–22931. [Google Scholar] [CrossRef]
- Rashid, A.; Ali, A. Performance Analysis of Low-Cost Infrared Sensors for Multi-Robot Localization and Communication. Int. J. Comput. Appl. 2018, 182, 23–29. [Google Scholar]
- Rémi, B.; Romain, R.; Lei, Q.; Pierre, M.; Xavier, S. A Vision-Based System for Robot Localization in Large Industrial Environments. J. Intell. Robot. Syst. 2019, 99, 359–370. [Google Scholar]
- Wu, H.; Mo, Z.; Tan, J.; He, S.; Gary Chan, S.-H. Efficient indoor localization based on geomagnetism. ACM Trans. Sens. Netw. 2019, 15, 42. [Google Scholar] [CrossRef]
- Poulose, A.; Eyobu, O.S.; Han, D.S. An Indoor Position Estimation Algorithm Using Smartphone IMU Sensor Data. IEEE Access 2019, 7, 11165–11177. [Google Scholar] [CrossRef]
- McCrady, D.D.; Doyle, L.; Forstrom, H.; Dempsy, T.; Martorana, M. Mobile ranging with low accuracy clocks. IEEE Trans. Microw. Theory Tech. 2000, 48, 951–957. [Google Scholar] [CrossRef]
- Zhao, Y. Standardization of mobile phone positioning for 3G systems. IEEE Comm. Mag. 2002, 40, 108–116. [Google Scholar] [CrossRef]
- Dabove, P.; Di Pietra, V.; Piras, M.; Jabbar, A.A.; Kazim, S.A. Indoor positioning using ultra-wide band (uwb) technologies: Positioning accuracies and sensors’ performances. In Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, USA, 23–26 April 2018; pp. 175–184. [Google Scholar]
- Lee, J.Y.; Scholtz, R.A. Ranging in a dense multipath environment using an UWB radio link. IEEE J. Sel. Areas Commun. 2002, 20, 1677–1683. [Google Scholar]
- Bekmezci, I.; Sahingoz, O.K.; Temel, S. Flying Ad Hoc Networks (FANETs): A Survey. Ad. Hoc. Networks 2013, 11, 1254–1270. [Google Scholar] [CrossRef]
- Valavanis, K.P.; Vachtsevanos, G.J. Handbook of Unmanned Aerial Vehicles; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Liu, D.; Xu, Y.; Wang, J.; Chen, J.; Yao, K.; Wu, Q.; Anpalagan, A. Opportunistic UAV Utilization in Wireless Networks: Motivations, Applications, and Challenges. IEEE Comm. Mag. 2020, 58, 62–68. [Google Scholar] [CrossRef]
- López, L.B.; van Manen, N.; van der Zee, E.; Bos, S. DroneAlert: Autonomous Drones for Emergency Response. In Multi-Technology Positioning, 2nd ed.; Nurmi, J., Lohan, E.-S., Wymeersch, H., Seco-Granados, G., Nykänen, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 303–321. [Google Scholar]
- Woldt, W.; Frew, E.; Meyer, G. Feeding a hungry world: The potential for unmanned aircraft systems. XRDS Crossroads ACM Mag. Stud. 2014, 20, 24–27. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2013, 6, 1–15. [Google Scholar] [CrossRef]
- Chen, A.Y.; Huang, Y.N.; Han, J.Y.; Kang, S.C.J. A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Struct. Syst. 2014, 13, 1065–1094. [Google Scholar]
- Murphy, D.W.; Cycon, J. Applications for mini VTOL UAV for law enforcement. Proc. SPIE 1999, 3577, 35–43. [Google Scholar]
- Kosme, S.M.; Sen, P.K.; Sahu, G. A Review on Unmanned Aerial Vehicle (UAV). Int. J. Res. Advent Technol. 2015, 3, 18–22. [Google Scholar]
- Beul, M.; Droeschel, D.; Nieuwenhuisen, M.; Quenzel, J.; Houben, S.; Behnke, S. Fast autonomous flight in warehouses for inventory applications. IEEE Robot. Autom. Lett. 2018, 3, 3121–3128. [Google Scholar] [CrossRef] [Green Version]
- Macoir, N.; Bauwens, J.; Jooris, B.; Van Herbruggen, B.; Rossey, J.; Hoebeke, J.; De Poorter, E. UWB Localization with Battery-Powered Wireless Backbone for Drone-Based Inventory Management. Sensors 2019, 19, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, W.; Park, J.H.; Lee, M.; Her, J.; Kim, S.H.; Seo, J.W. Robust autonomous navigation of unmanned aerial vehicles (uavs) for warehouses’ inventory application. IEEE Robot. Autom. Lett. 2020, 5, 243–249. [Google Scholar] [CrossRef]
- Matos-Carvalho, J.P.; Santos, R.; Tomic, S.; Beko, M. GTRS-Based Algorithm for UAV Navigation in Indoor Environments Employing Range Measurements and Odometry. IEEE Access 2021, 9, 89120–89132. [Google Scholar] [CrossRef]
- Orgeira-Crespo, P.; Ulloa, C.; Rey-Gonzalez, G.; Pérez García, J.A. Methodology for Indoor Positioning and Landing of an Unmanned Aerial Vehicle in a Smart Manufacturing Plant for Light Part Delivery. Electronics 2020, 9, 1680. [Google Scholar] [CrossRef]
- Ito, Y. An indoor hybrid blimp logistics drone provided with crash-free ability at full power-loss condition. In Proceedings of the 11th International Airship Convention and Regatta, Bedford, UK, 19–21 October 2017. [Google Scholar]
- Yang, Z.-X.; Zhang, P.; Chen, L. RFID-enabled indoor positioning method for a real-time manufacturing execution system using OS-ELM. Neurocomputing 2016, 174, 121–133. [Google Scholar] [CrossRef]
- Narkus-Kramer, M.P. Future Demand and Benefits for Small Unmanned Aerial Systems (UAS) Package Delivery. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017; p. 4103. [Google Scholar]
- Chipade, V.S.; Abhishek; Kothari, M.; Chaudhari, R.R. Systematic design methodology for development and flight testing of a variable pitch quadrotor biplane VTOL UAV for payload delivery. Mechatronics 2018, 55, 94–114. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, R. Guest editorial: Can drones deliver? IEEE Trans. Autom. Sci. Engin. 2014, 11, 647–648. [Google Scholar] [CrossRef]
- Boršcová, D.; Draganová, K. Utilization possibilities of unmanned aerial systems in postal and parcel services. Acta Avion. 2014, 16, 16. [Google Scholar]
- Zeng, Y.; Lyu, J.; Zhang, R. Cellular-Connected UAV: Potential, Challenges, and Promising Technologies. IEEE Wirel. Comm. 2019, 26, 120–127. [Google Scholar] [CrossRef]
- Hanscom, A.; Bedford, M. Unmanned Aircraft System (UAS) Service Demand 2015–2035: Literature Review and Projections of Future Usage; Technical Report DOT-VNTSC-DoD-13-01; Research and Innovative Technology Administration, U.S. Department of Transportation: Washington, DC, USA, 2014. [Google Scholar]
- Pan, X.; Yan, C.; Zhang, J. Joint range estimation using single carrier burst signals for networked uavs. IEEE Access 2021, 9, 42533–42542. [Google Scholar] [CrossRef]
- Lu, K.; Xie, J.; Wan, Y.; Fu, S. Toward UAV-Based Airborne Computing. IEEE Wirel. Comm. 2019, 26, 172–179. [Google Scholar] [CrossRef]
- Falanga, D.; Zanchettin, A.; Simovic, A.; Delmerico, J.; Scaramuzza, D. Vision-based autonomous quadrotor landing on a moving platform. In Proceedings of the IEEE/RSJ International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China, 11–13 October 2017; pp. 200–207. [Google Scholar]
- Nguyen, T.; Nguyen, T.H.; Cao, M.; Qiu, Z.; Xie, L. Integrated UWB-Vision Approach for Autonomous Docking of UAVs in GPS-denied Environments. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 9603–9609. [Google Scholar]
- Bishop, A.N.; Fidan, B.; Anderson, B.D.O.; Doğançay, K.; Pathirana, P.N. Optimality analysis of sensor-target localization geometries. Automatica 2010, 46, 479–492. [Google Scholar] [CrossRef]
- Mortenson, M. Geometric Transformations for 3D Modeling; Industrial Press: South Norwalk, CT, USA, 2007. [Google Scholar]
- Gan, Y.; Cong, X.; Sun, Y. Refinement of TOA Localization with Sensor Position Uncertainty in Closed-Form. Sensors 2020, 20, 390. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Wang, J.; Tsujii, T.; Rizos, C. Inverted pseudolite positioning and some applications. Surv. Rev. 2002, 36, 602–611. [Google Scholar] [CrossRef]
- Barnes, J.; Rizos, C.; Wang, J.; Small, D.; Voigt, G.; Gambale, N. Locata: A New Positioning Technology for High Precision Indoor and Outdoor Positioning. In Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, USA, 9–12 September 2003; pp. 1119–1128. [Google Scholar]
- Noronha, J.; Jovancevic, A.; Bhatia, N.; Sirpatil, B.; Kirchner, M.; Saxena, D. Field test results of a flexible pseudolite based navigation system. In Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, USA, 26–29 September 2006; pp. 102–113. [Google Scholar]
- Amt, J.; Raquet, J. Positioning for Range-Based Land Navigation Systems Using Surface Topography. In Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2006), Fort Worth, TX, USA, 26–29 September 2006; pp. 1494–1505. [Google Scholar]
- Jang, J.; Ahn, W.; Seo, S.; Lee, J.; Park, J. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle. Sensors 2015, 15, 28472–28489. [Google Scholar] [CrossRef] [Green Version]
- Ash, J.N.; Moses, R.L. On optimal anchor node placement in sensor localization by optimization of subspace principal angles. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, NV, USA, 31 March–4 April 2008; pp. 2289–2292. [Google Scholar]
- Lui, K.W.K.; So, H.C. A study of two-dimensional sensor placement using time-difference-of-arrival measurements. Digit. Signal Process. 2009, 19, 650–659. [Google Scholar] [CrossRef]
- Yan, J. Algorithms for Indoor Positioning Systems Using Ultra-Wideband Signals. Ph.D. Thesis, TU Delft, Delft, Netherlands, 2010. [Google Scholar]
- Marks, M.; Niewiadomska-Szynkiewicz, E. Two-phase stochastic optimization to sensor network localization. In Proceedings of the 2007 IEEE International Conference on Sensor Technologies and Applications, Valencia, Spain, 14–20 October 2007; pp. 134–139. [Google Scholar]
- Chuang, P.-J.; Wu, C.-P. An effective PSO-based node localization scheme for wireless sensor networks. In Proceedings of the 2008 IEEE International Conference on Parallel and Distributed Computing, Applications and Technologies, Otago, New Zealand, 1–4 December 2008; pp. 187–194. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall International Editions: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Li, Y.-Y.; Wang, C.-C.; Qi, G.-Q.; Sheng, A.-D. Closed-form formula of Cramer–Rao lower bound for 3D TOA target localisation. Electron. Lett. 2020, 56, 43–45. [Google Scholar] [CrossRef]
- Khalaf-Allah, M. Time of arrival (TOA)-based direct location method. In Proceedings of the International Radar Symposium (IRS-2015), Dresden, Germany, 24–26 June 2015; pp. 812–815. [Google Scholar]
- Beutel, J. Geolocation in a Picoradio Environment. Master’s Thesis, UC Berkeley, Berkeley, CA, USA, 1999. [Google Scholar]
- Caffery, J.J. A new approach to the geometry of TOA location. In Proceedings of the 2000 IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152), Boston, MA, USA, 24–28 September 2000; pp. 1943–1949. [Google Scholar]
- Li, Z.; Trappe, W.; Zhang, Y.; Nath, B. Robust statistical methods for securing wireless localization in sensor networks. In Proceedings of the 2005 IEEE International Symposium on Information Processing in Sensor Networks (IPSN), Los Angeles, CA, USA, 15 April 2005; pp. 91–98. [Google Scholar]
- Venkatesh, S.; Buehrer, R.M. A linear programming approach to NLOS error mitigation in sensor networks. In Proceedings of the 2006 IEEE International Symposium on Information Processing in Sensor Networks (IPSN), Nashville, TN, USA, 19–21 April 2006; pp. 301–308. [Google Scholar]
- Guvenc, I.; Gezici, S.; Watanabe, F.; Inamura, H. Enhancements to linear least squares localization through reference selection and ML estimation. In Proceedings of the 2008 IEEE Wireless Communications and Networking Conference, Las Vegas, NV, USA, 31 March–3 April 2008; pp. 284–289. [Google Scholar]
- Yan, J.; Tiberius, C.C.J.M.; Bellusci, G.; Janssen, G.J.M. A novel non-iterative localization solution. In Proceedings of the 2009 IEEE Global Telecommunications Conference (GLOBECOM 2009), Honolulu, HI, USA, 30 November–4 December 2009. [Google Scholar]
- Schmidt, R.O. A new approach to geometry of range difference location. IEEE Trans. Aerosp. Electron. Syst. 1972, 8, 821–835. [Google Scholar] [CrossRef]
- Bancroft, S. An algebraic solution for the GPS equations. IEEE Trans. Aerosp. Electron. Syst. 1985, 21, 56–59. [Google Scholar] [CrossRef]
- Schau, H.C.; Robinson, A.Z. Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1223–1225. [Google Scholar] [CrossRef]
- Smith, J.O.; Abel, J.S. The spherical interpolation method of source localization. IEEE J. Ocean. Eng. 1987, 12, 246–252. [Google Scholar] [CrossRef]
- Smith, J.O.; Abel, J.S. Closed-form least-squares source location estimation from range-difference measurements. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1661–1669. [Google Scholar] [CrossRef]
- Friedlander, B. A passive location algorithm and its accuracy analysis. IEEE J. Ocean. Eng. 1987, 12, 234–245. [Google Scholar] [CrossRef]
- Krause, L.O. A direct solution to GPS-type navigation equations. IEEE Trans. Aerosp. Electron. Syst. 1987, 23, 225–232. [Google Scholar] [CrossRef]
- Fang, B. Simple solutions for hyperbolic and related position fixes. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 748–753. [Google Scholar] [CrossRef]
- Chaffee, J.; Abel, J. On the exact solutions of pseudorange equations. IEEE Trans. Aerosp. Electron. Syst. 1991, 30, 1021–1030. [Google Scholar] [CrossRef]
- Ho, K.; Chan, Y. Solution and performance analysis of geolocation by TDOA. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 1311–1322. [Google Scholar] [CrossRef]
- Chan, Y.T.; Ho, K.C. Simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915. [Google Scholar] [CrossRef] [Green Version]
- Leva, J.L. An alternative closed-form solution to the GPS pseudo-range equations. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1430–1439. [Google Scholar] [CrossRef]
- Kleusberg, A. Analytical GPS navigation solution. In Geodesy–The Challenge of the 3rd Millennium; Grafarend, E.W., Krumm, F.W., Schwarze, V.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 93–96. [Google Scholar]
- Khalaf-Allah, M.; Qaisar, S.U. Nuisance Parameter Exploitation for Accurate 3D Hyperbolic Geolocation—Field Results. In Proceedings of the International Radar Symposium (IRS-2013), Dresden, Germany, 19–21 June 2013; pp. 1025–1030. [Google Scholar]
- Khalaf-Allah, M. An extended closed-form least-squares solution for three-dimensional hyperbolic geolocation. In Proceedings of the 2014 IEEE Symposium on Industrial Electronics Applications (ISIEA), Kota Kinabalu, Malaysia, 28 September–1 October 2014; pp. 7–11. [Google Scholar]
- Khalaf-Allah, M. Performance Comparison of Closed-Form Least Squares Algorithms for Hyperbolic 3-D Positioning. J. Sens. Actuator Netw. 2020, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Rekkas, C.M.; Lefas, C.C.; Krikelis, N.J. Improving the accuracy of aircraft absolute altitude estimation using DME measurements. Int. J. Syst. Sci. 1990, 21, 1381–1392. [Google Scholar] [CrossRef]
- Khalaf-Allah, M. Particle Filtering for Three-Dimensional TDoA-Based Positioning Using Four Anchor Nodes. Sensors 2020, 20, 4516. [Google Scholar] [CrossRef]
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Qiu, Z.; Miao, C.; Zaini, A.H.; Chen, C.L.; Meng, W.; Xie, L. Ultra-Wideband-Based Localization for Quadcopter Navigation. Unmanned Syst. 2016, 4, 23–34. [Google Scholar] [CrossRef]
- Li, J.; Bi, Y.; Li, K.; Wang, K.; Lin, F.; Chen, B.M. Accurate 3D Localization for MAV Swarms by UWB and IMU Fusion. In Proceedings of the 2018 IEEE 14th International Conference on Control and Automation (ICCA), Anchorage, AK, USA, 12–15 June 2018. [Google Scholar]
- Nguyen, T.; Qiu, Z.; Cao, M.; Nguyen, T.H.; Xie, L. An Integrated Localization-Navigation Scheme for Distance-Based Docking of UAVs. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 5245–5250. [Google Scholar]
- Fidan, B.; Dasgupta, S.; Anderson, B.D. Adaptive range measurement-based target pursuit. Int. J. Adapt. Control Signal Process. 2013, 27, 66–81. [Google Scholar] [CrossRef]
- Chaudhary, G.; Sinha, A.; Tripathy, T.; Borkar, A. Conditions for target tracking with range-only information. Robot. Auton. Syst. 2016, 75, 176–186. [Google Scholar] [CrossRef]
- Güler, S.; Fidan, B.; Dasgupta, S.; Anderson, B.D.O.; Shames, I. Adaptive Source Localization Based Station Keeping of Autonomous Vehicles. IEEE Trans. Autom. Control 2017, 62, 3122–3135. [Google Scholar] [CrossRef]
- Shames, I.; Dasgupta, S.; Fidan, B.; Anderson, B.D.O. Circumnavigation Using Distance Measurements Under Slow Drift. IEEE Trans. Autom. Control 2012, 57, 889–903. [Google Scholar] [CrossRef]
- Cao, Y. UAV circumnavigating an unknown target under a GPS-denied environment with range-only measurements. Automatica 2015, 55, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, R.K.; Bhaumik, S.; Date, P.; Kirubarajan, T. Particle Filter for Randomly Delayed Measurements with Unknown Latency Probability. Sensors 2020, 20, 5689. [Google Scholar] [CrossRef] [PubMed]
- Benavidez, P.; Lambert, J.; Jaimes, A.; Jamshidi, M. Landing of an ardrone 2.0 quadcopter on a mobile base using fuzzy logic. In Proceedings of the 2014 World Automation Congress (WAC), Waikoloa, HI, USA, 3–7 August 2014; pp. 803–812. [Google Scholar]
- Sani, M.F.; Karimian, G. Automatic navigation and landing of an indoor AR. drone quadrotor using ArUco marker and inertial sensors. In Proceedings of the 2017 International Conference on Computer and Drone Applications (IConDA), Kuching, Malaysia, 9–11 November 2017; pp. 102–107. [Google Scholar]
- Oliveira, L.G.D.; Alabd, M.B.; Nuss, B.; Zwick, T. Range Association and Fusion in a Network of Single-Channel Monostatic OFDM Radars. In Proceedings of the 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Linz, Austria, 23 November 2020; pp. 1–4. [Google Scholar]
- De Croon, G.; De Wagter, C. Challenges of Autonomous Flight in Indoor Environments. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1003–1009. [Google Scholar]
- Duan, H.; Qiao, P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 2014, 7, 24–37. [Google Scholar] [CrossRef]
Measurement Update Rate (Hz) | Total No. of Measurements | Traveled Distance (cm) |
---|---|---|
4 | 361 | 2.5 |
8 | 721 | 1.25 |
16 | 1441 | 0.625 |
RMSE (m) | 30 dB | 35 dB | 40 dB | Measurement Update Rate | |||
---|---|---|---|---|---|---|---|
DM | PF | DM | PF | DM | PF | ||
3D | 0.53 | 0.35 | 0.32 | 0.27 | 0.20 | 0.22 | |
Horizontal | 0.45 | 0.31 | 0.27 | 0.24 | 0.17 | 0.20 | 4 Hz |
Vertical | 0.27 | 0.16 | 0.16 | 0.11 | 0.09 | 0.09 | |
3D | 0.49 | 0.30 | 0.25 | 0.23 | 0.12 | 0.21 | |
Horizontal | 0.41 | 0.26 | 0.21 | 0.21 | 0.11 | 0.19 | 8 Hz |
Vertical | 0.26 | 0.14 | 0.13 | 0.09 | 0.06 | 0.08 | |
3D | 0.48 | 0.27 | 0.24 | 0.19 | 0.10 | 0.15 | |
Horizontal | 0.40 | 0.24 | 0.20 | 0.17 | 0.09 | 0.14 | 16 Hz |
Vertical | 0.26 | 0.12 | 0.13 | 0.08 | 0.05 | 0.06 |
RMSE (m) | 30 dB | 35 dB | 40 dB | Measurement Update Rate | |||
---|---|---|---|---|---|---|---|
DM | PF | DM | PF | DM | PF | ||
3D | 0.31 | 0.37 | 0.24 | 0.27 | 0.21 | 0.23 | |
Horizontal | 0.28 | 0.34 | 0.20 | 0.25 | 0.18 | 0.21 | 4 Hz |
Vertical | 0.14 | 0.15 | 0.13 | 0.10 | 0.12 | 0.08 | |
3D | 0.26 | 0.32 | 0.17 | 0.24 | 0.13 | 0.21 | |
Horizontal | 0.23 | 0.29 | 0.15 | 0.23 | 0.11 | 0.20 | 8 Hz |
Vertical | 0.11 | 0.13 | 0.08 | 0.09 | 0.07 | 0.06 | |
3D | 0.24 | 0.28 | 0.14 | 0.21 | 0.10 | 0.16 | |
Horizontal | 0.21 | 0.26 | 0.12 | 0.19 | 0.08 | 0.15 | 16 Hz |
Vertical | 0.11 | 0.12 | 0.06 | 0.08 | 0.05 | 0.05 |
RMSE (m) | 30 dB | 35 dB | 40 dB | Measurement Update Rate | |||
---|---|---|---|---|---|---|---|
DM | PF | DM | PF | DM | PF | ||
3D | 0.46 | 0.28 | 0.22 | 0.21 | 0.17 | 0.17 | |
Horizontal | 0.40 | 0.25 | 0.19 | 0.19 | 0.15 | 0.16 | 4 Hz |
Vertical | 0.24 | 0.13 | 0.10 | 0.09 | 0.07 | 0.06 | |
3D | 0.42 | 0.26 | 0.17 | 0.19 | 0.11 | 0.14 | |
Horizontal | 0.36 | 0.23 | 0.15 | 0.17 | 0.10 | 0.13 | 8 Hz |
Vertical | 0.22 | 0.13 | 0.08 | 0.09 | 0.05 | 0.06 | |
3D | 0.43 | 0.25 | 0.15 | 0.18 | 0.09 | 0.12 | |
Horizontal | 0.36 | 0.21 | 0.13 | 0.15 | 0.08 | 0.11 | 16 Hz |
Vertical | 0.23 | 0.13 | 0.08 | 0.08 | 0.04 | 0.06 |
RMSE (m) | 30 dB | 35 dB | 40 dB | Measurement Update Rate | |||
---|---|---|---|---|---|---|---|
DM | PF | DM | PF | DM | PF | ||
3D | 0.27 | 0.25 | 0.21 | 0.19 | 0.19 | 0.16 | |
Horizontal | 0.23 | 0.22 | 0.19 | 0.17 | 0.17 | 0.15 | 4 Hz |
Vertical | 0.14 | 0.13 | 0.10 | 0.09 | 0.08 | 0.05 | |
3D | 0.22 | 0.23 | 0.16 | 0.16 | 0.13 | 0.12 | |
Horizontal | 0.18 | 0.19 | 0.12 | 0.14 | 0.10 | 0.10 | 8 Hz |
Vertical | 0.14 | 0.13 | 0.10 | 0.08 | 0.08 | 0.05 | |
3D | 0.21 | 0.21 | 0.14 | 0.15 | 0.11 | 0.10 | |
Horizontal | 0.16 | 0.17 | 0.10 | 0.12 | 0.06 | 0.09 | 16 Hz |
Vertical | 0.14 | 0.13 | 0.10 | 0.08 | 0.08 | 0.05 |
RMSE (m) | 30 dB | 35 dB | 40 dB | Measurement Update Rate | |||
---|---|---|---|---|---|---|---|
DM | PF | DM | PF | DM | PF | ||
3D | 1.92 | 0.32 | 0.41 | 0.23 | 0.34 | 0.18 | |
Horizontal | 1.61 | 0.28 | 0.38 | 0.21 | 0.32 | 0.17 | 4 Hz |
Vertical | 1.05 | 0.15 | 0.16 | 0.09 | 0.11 | 0.06 | |
3D | 1.99 | 0.26 | 0.33 | 0.17 | 0.18 | 0.12 | |
Horizontal | 1.64 | 0.23 | 0.28 | 0.15 | 0.17 | 0.11 | 8 Hz |
Vertical | 1.12 | 0.12 | 0.16 | 0.08 | 0.07 | 0.05 | |
3D | 1.33 | 0.23 | 0.15 | 0.16 | 0.11 | 0.10 | |
Horizontal | 1.10 | 0.20 | 0.13 | 0.13 | 0.10 | 0.09 | 16 Hz |
Vertical | 0.76 | 0.12 | 0.08 | 0.08 | 0.05 | 0.05 |
RMSE (m) | 30 dB | 35 dB | 40 dB | Measurement Update Rate | |||
---|---|---|---|---|---|---|---|
DM | PF | DM | PF | DM | PF | ||
3D | 0.41 | 0.37 | 0.35 | 0.26 | 0.32 | 0.20 | |
Horizontal | 0.38 | 0.34 | 0.32 | 0.24 | 0.30 | 0.19 | 4 Hz |
Vertical | 0.16 | 0.14 | 0.12 | 0.09 | 0.11 | 0.05 | |
3D | 0.32 | 0.31 | 0.24 | 0.21 | 0.20 | 0.15 | |
Horizontal | 0.28 | 0.28 | 0.20 | 0.20 | 0.16 | 0.14 | 8 Hz |
Vertical | 0.16 | 0.12 | 0.12 | 0.08 | 0.11 | 0.05 | |
3D | 0.30 | 0.26 | 0.20 | 0.18 | 0.16 | 0.12 | |
Horizontal | 0.25 | 0.24 | 0.15 | 0.16 | 0.11 | 0.11 | 16 Hz |
Vertical | 0.16 | 0.11 | 0.13 | 0.08 | 0.12 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalaf-Allah, M. Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem. Sensors 2021, 21, 7325. https://doi.org/10.3390/s21217325
Khalaf-Allah M. Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem. Sensors. 2021; 21(21):7325. https://doi.org/10.3390/s21217325
Chicago/Turabian StyleKhalaf-Allah, Mohamed. 2021. "Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem" Sensors 21, no. 21: 7325. https://doi.org/10.3390/s21217325
APA StyleKhalaf-Allah, M. (2021). Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem. Sensors, 21(21), 7325. https://doi.org/10.3390/s21217325