Monitoring and Assessment of Indoor Environmental Conditions after the Implementation of COVID-19-Based Ventilation Strategies in an Educational Building in Southern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Case Study Area and Climatic Conditions
2.2. Sensor Location and Data Collection: Natural Ventilation Strategies Setup
2.3. Monitoring Indoor Environmental Factors under the Selected Ventilation Strategy
3. Results and Discussion
3.1. Natural VR with Different Windows and Door Opening Configuration
3.2. Indoor Environmental Conditions
4. Conclusions
- (a)
- The ventilation scenarios have to be carefully analysed to ensure that they meet the recommendations set out in the guidelines (i.e., 6 ACH). In our study, only Scenario 1 achieved a sufficient ACH value. Thus, it is strongly recommended to perform measurements to set up the correct ventilation scenario.
- (b)
- The public guidelines established in the context of the transmission of SARS-CoV-2 within indoor spaces have an impact on the indoor environmental conditions. Although the CO2 concentration levels remained well below the limit during the entire teaching activities, the results from this work show that the impact of the implementation of the COVID-19 protocols on the indoor environmental conditions is significant in regard to thermal and acoustic comfort.
- (c)
- The natural ventilation strategy adopted during the classroom activities significantly affects the thermal and acoustic comfort in the classroom. In this sense, it is clear that it is necessary to keep in mind that indoor spaces must be kept safe and healthy, but strategies must also be provided to ensure this while minimising the impact on the other IEQ factors. Increasing or decreasing the classroom temperature to achieve thermal comfort with the VR recommended by the Spanish government would require additional energy inputs into heating and air conditioning systems.
- (d)
- Educational buildings need to establish a set of preferred ventilation schemes that ensure an adequate IAQ without reducing other performance levels, such as thermal comfort and acoustic environment. Adapting the strategies not only to the characteristics of the classroom but also to the characteristics of the activity will ensure that spaces are used safely and provide equal opportunities for students to continue their education in an appropriate environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- International Energy Agency (IEA). CO2 Emissions from Fuel Combustion. Beyond 2020 Online Database, International Energy Agency, Paris. Available online: http://data.iea.org. (accessed on 26 September 2021).
- International Energy Agency (IEA). World Energy Outlook, Paris. Available online: https://www.iea.org/reports/world-energy-outlook-2020 (accessed on 26 September 2021).
- Sebi, C.; Nadel, S.; Schlomann, B.; Steinbach, J. Policy strategies for achieving large long-term savings from retrofitting existing buildings. Energy Effic. 2019, 12, 89–105. [Google Scholar] [CrossRef]
- Carmichael, L.; Prestwood, E.; Marsh, R.; Ige, J.; Williams, B.; Pilkington, P.; Eaton, E.; Michalec, A. Healthy buildings for a healthy city: Is the public health evidence base informing current building policies? Sci. Total Environ. 2020, 719, 137146. [Google Scholar] [CrossRef]
- Persily, A.K.; Emmerich, S.J. Indoor air quality in sustainable, energy efficient buildings. Hvac&R Res. 2012, 18, 4–20. [Google Scholar] [CrossRef]
- Nimlyat, P.S.; Kandar, M.Z. Appraisal of indoor environmental quality (IEQ) in healthcare facilities: A literature review. Sustain. Cities Soc. 2015, 17, 61–68. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Bellia, L.; Boerstra, A.; van Dijken, F.; Ianniello, E.; Lopardo, G.; Minichiello, F.; Romagnoni, P.; da Silva, M.G. REHVA—Indoor Environment and Energy Efficiency in Schools—Part 1; REHVA: Brussels, Belgium, 2010; pp. 1–121. [Google Scholar]
- Salata, F.; Golasi, I.; Verrusio, W.; de Lieto Vollaro, E.; Cacciafesta, M.; de Lieto Vollaro, A. On the necessities to analyse the thermohygrometric perception in aged people. A review about indoor thermal comfort, health and energetic aspects and a perspective for future studies. Sustain. Cities Soc. 2018, 41, 469–480. [Google Scholar] [CrossRef]
- Heracleous, C.; Michael, A. Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions. Energy 2018, 165, 1228–1239. [Google Scholar] [CrossRef]
- Lamb, S.; Kwok, K.C. A longitudinal investigation of work environment stressors on the performance and wellbeing of office workers. Appl. Ergon. 2016, 52, 104–111. [Google Scholar] [CrossRef]
- Zomorodian, Z.S.; Tahsildoost, M.; Hafezi, M. Thermal comfort in educational buildings: A review article. Renew. Sustain. Energy Rev. 2016, 59, 895–906. [Google Scholar] [CrossRef]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef]
- Barrett, P.; Davies, F.; Zhang, Y.; Barrett, L. The impact of classroom design on pupils’ learning: Final results of a holistic, multi-level analysis. Build. Environ. 2015, 89, 118–133. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Wang, D.; Liu, Y.; Xu, Y.; Liu, J. A study on pupils’ learning performance and thermal comfort of primary schools in China. Build. Environ. 2018, 134, 102–113. [Google Scholar] [CrossRef]
- Wargocki, P.; Porras-Salazar, J.A.; Contreras-Espinoza, S. The relationship between classroom temperature and children’s performance in school. Build. Environ. 2019, 157, 197–204. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P. Providing better thermal and air quality conditions in school classrooms would be cost-effective. Build. Environ. 2013, 59, 581–589. [Google Scholar] [CrossRef]
- Hong, T.; Kim, J.; Lee, M. Integrated task performance score for the building occupants based on the CO2 concentration and indoor climate factors changes. Appl. Energy 2018, 228, 1707–1713. [Google Scholar] [CrossRef]
- Kristiansen, J.; Persson, R.; Lund, S.P.; Shibuya, H.; Nielsen, P.M. Effects of classroom acoustics and self-reported noise exposure on teachers’ well-being. Environ. Behav. 2013, 45, 283–300. [Google Scholar] [CrossRef]
- Krüger, E.L.; Zannin, P.H. Acoustic, thermal and luminous comfort in classrooms. Build. Environ. 2004, 39, 1055–1063. [Google Scholar] [CrossRef]
- Haverinen-Shaughnessy, U.; Shaughnessy, R.J.; Cole, E.C.; Toyinbo, O.; Moschandreas, D.J. An assessment of indoor environmental quality in schools and its association with health and performance. Build. Environ. 2015, 93, 35–40. [Google Scholar] [CrossRef]
- Almeida, R.M.; Pinto, M.; Pinho, P.G.; de Lemos, L.T. Natural ventilation and indoor air quality in educational buildings: Experimental assessment and improvement strategies. Energ. Effic. 2017, 10, 839–854. [Google Scholar] [CrossRef] [Green Version]
- Toyinbo, O.; Shaughnessy, R.; Turunen, M.; Putus, T.; Metsämuuronen, J.; Kurnitski, J.; Haverinen-Shaughnessy, U. Building characteristics, indoor environmental quality, and mathematics achievement in Finnish elementary schools. Build. Environ 2016, 104, 114–121. [Google Scholar] [CrossRef]
- Kamaruzzaman, S.; Sabrani, N. The effect of indoor air quality (IAQ) towards occupants’ psychological performance in office buildings. J. Des. Built 2011, 4, 49–61. [Google Scholar]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., III; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Simoni, M.; Annesi-Maesano, I.; Sigsgaard, T.; Norback, D.; Wieslander, G.; Nystad, W.; Canciani, M.; Sestini, P.; Viegi, G. School air quality related to dry cough, rhinitis and nasal patency in children. Eur. Respir. J. 2010, 35, 742–749. [Google Scholar] [CrossRef]
- Mentese, S.; Mirici, N.A.; Elbir, T.; Palaz, E.; Mumcuoğlu, D.T.; Cotuker, O.; Bakar, C.; Oymak, S.; Otkun, M.T. A long-term multi-parametric monitoring study: Indoor air quality (IAQ) and the sources of the pollutants, prevalence of sick building syndrome (SBS) symptoms, and respiratory health indicators. Atmos. Pollut. Res. 2020, 11, 2270–2281. [Google Scholar] [CrossRef]
- Alfano, F.d.A.; Bellia, L.; Boerstra, A.; Van Dijken, F.; Ianniello, E.; Lopardo, G.; Minichiello, F.; Romagnoni, P.; da Silva, M.G.F. WS10: The REHVA guidebook on indoor environment and energy efficiency in schools–Part 1: Principles. REHVA J. 2010, 13, 1–121. [Google Scholar]
- Becker, R.; Goldberger, I.; Paciuk, M. Improving energy performance of school buildings while ensuring indoor air quality ventilation. Build. Environ. 2007, 42, 3261–3276. [Google Scholar] [CrossRef]
- Batterman, S.; Su, F.C.; Wald, A.; Watkins, F.; Godwin, C.; Thun, G. Ventilation rates in recently constructed US school classrooms. Indoor Air 2017, 27, 880–890. [Google Scholar] [CrossRef] [PubMed]
- SeppȨnen, O. Ventilation strategies for good indoor air quality and energy efficiency. Int. J. Vent. 2008, 6, 297–306. [Google Scholar] [CrossRef]
- Dias, M.; Bernardo, H.; Ramos, J.; Egido, M. Indoor Environment and Energy Efficiency in School Buildings—Part 1: Indoor Air Quality. In Proceedings of the 2011 3rd International Youth Conference on Energetics (IYCE), Leiria, Portugal, 7–9 July 2011; pp. 1–7. [Google Scholar]
- UNESCO. Education: From Disruption to Recovery. 2021. Available online: https://en.unesco.org/covid19/educationresponse (accessed on 1 July 2021).
- Ministerio de Sanidad Gobierno de España. Evaluación del Riesgo de la Transmisión de SARS-CoV-2 Mediante Aerosoles. Medidas de Prevención y Recomendaciones. Ministerio de Sanidad. Gobierno de España. 2020. Available online: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/COVID19_Aerosoles.pdf (accessed on 1 July 2021).
- Universidad de Granada. Plan de Contingencia. Plan de Actuación COVID-19. 2020. Available online: https://covid19.ugr.es/informacion/plan-contingencia (accessed on 1 July 2021).
- De la Hoz-Torres, M.L.; Aguilar, A.J.; Ruiz, D.P.; Martínez-Aires, M.D. Analysis of impact of natural ventilation strategies in ventilation rates and indoor environmental acoustics using sensor measurement data in educational buildings. Sensors 2021, 21, 6122. [Google Scholar] [CrossRef]
- Temprano, J.P.; Eichholtz, P.; Willeboordse, M.; Kok, N. Indoor environmental quality and learning outcomes: Protocol on large-scale sensor deployment in schools. BMJ Open 2020, 10, e031233. [Google Scholar] [CrossRef]
- Montávez, J.P.; Rodríguez, A.; Jiménez, J.I. A study of the urban heat island of Granada. Int. J. Climatol. 2000, 20, 899–911. [Google Scholar] [CrossRef]
- Allen, J.; Spengler, J.; Jones, E.; Cedeno-Laurent, J. 5-Step Guide to Checking Ventilation Rates in Classrooms. Healthy Buildings. Harvard Healthy Buildings Program. 2020. Available online: https://schools.forhealth.org/ventilation-guide/ (accessed on 1 July 2021).
- CSIC-IDAEA. Ministerio de Ciencia e Innovación y Mesura. Guía Para Ventilación en Aulas. Instituto de Diagnóstico Ambiental y Estudios del Agua, IDAEA-CSIC, Mesura. 2020. Available online: https://digital.csic.es/bitstream/10261/221538/14/guia_ventilacion_aulas_CSIC-Mesura_v4.pdf (accessed on 1 July 2021).
- Cui, S.; Cohen, M.; Stabat, P.; Marchio, D. CO2 tracer gas concentration decay method for measuring air change rate. Build. Environ. 2015, 84, 162–169. [Google Scholar] [CrossRef]
- Kephalopoulos, S.; Csobod, E.; Bruinen de Bruin, Y.; Oliveira Fernandes, E.D.; Carrer, P.; Mandin, C.; Stranger, M.; Annesi-Maesano, I.; Giacomini, M.; Koudijs, E. Guidelines for healthy environments within European schools. 2014. Available online: https://op.europa.eu/en/publication-detail/-/publication/d19bfa75-5141-4470-8952-0539df0b2cb9/language-en (accessed on 28 October 2021). [CrossRef]
- Alonso, A.; Llanos, J.; Escandón, R.; Sendra, J.J. Effects of the Covid-19 pandemic on indoor air quality and thermal comfort of primary schools in winter in a Mediterranean climate. Sustainability 2021, 13, 2699. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines for Europe. Copenhagen: WHO Regional Office for Europe. Available online: https://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf (accessed on 26 September 2021).
- Federation Of Europe Heating, Ventilation and Air Conditioning Associations (REHVA). How to Operate and Use Building Services in Order to Prevent the Spread of the Coronavirus Disease (COVID-19) Virus (Sars-Cov-2) in Workplaces. 2020. Available online: https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_ver2_20200403_1.pdf (accessed on 1 July 2021).
- Villanueva, F.; Notario, A.; Cabañas, B.; Martín, P.; Salgado, S.; Gabriel, M.F. Assessment of CO2 and aerosol (PM2. 5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain. Environ. Res. 2021, 197, 111092. [Google Scholar] [CrossRef]
- Lovec, V.; Premrov, M.; Leskovar, V.Ž. Practical impact of the COVID-19 pandemic on indoor air quality and thermal comfort in kindergartens. A case study of Slovenia. Int. J. Environ. Res. Public Health 2021, 18, 9712. [Google Scholar] [CrossRef] [PubMed]
- Meiss, A.; Jimeno-Merino, H.; Poza-Casado, I.; Llorente-Álvarez, A.; Padilla-Marcos, M.Á. Indoor air quality in naturally ventilated classrooms. Lessons learned from a case study in a COVID-19 scenario. Sustainability 2021, 13, 8446. [Google Scholar] [CrossRef]
- ANSI/ASA. ANSI/ASA S12.60-2010/Part 1 American National Standard Acoustical Performance Criteria, Design Requirements, and Guidelines for Schools, Part 1: Permanent Schools. 2010. Available online: https://standards.globalspec.com/std/14296539/ansi-asa-s12-60-part-1 (accessed on 26 September 2021).
- Berglund, B.; Lindvall, T.; Schwela, D.H.; WHO. Guidelines for Community Noise; WHO: Geneva, Switzerland, 1999. [Google Scholar]
- Lee, S.E.; Khew, S.K. Impact of road traffic and other sources of noise on the school environment. Indoor Built Environ. 1992, 1, 162–169. [Google Scholar] [CrossRef]
- Shield, B.; Dockrell, J.E. External and internal noise surveys of London primary schools. J. Acoust. Soc. Am. 2004, 115, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.-M.; Lai, C.-M. Acoustical environment evaluation of Joint Classrooms for elementary schools in Taiwan. Build. Environ. 2008, 43, 1619–1632. [Google Scholar] [CrossRef]
- Ali, S.A.A. Study effects of school noise on learning achievement and annoyance in Assiut city, Egypt. Appl. Acoust. 2013, 74, 602–606. [Google Scholar] [CrossRef]
- Norzeri, M.A.A.; Jamaludin, N. A Study on Noise Level for School at Sjrc Samtet Ipoh and Pusat Tingkatan Enam Seri Ipoh. In 3rd Undergraduate Seminar on Built Environment and Technology (USBET2018). 2018. Available online: https://icrp2018.wixsite.com/icrp18 (accessed on 28 October 2021).
- Papanikolaou, M.; Skenteris, N.; Piperakis, S. Effect of external classroom noise on schoolchildren’s reading and mathematics performance: Correlation of noise levels and gender. Int. J. Adolesc. Med. Health 2015, 27, 25–29. [Google Scholar] [CrossRef]
- Stansfeld, S.A.; Berglund, B.; Clark, C.; Lopez-Barrio, I.; Fischer, P.; Öhrström, E.; Haines, M.M.; Head, J.; Hygge, S.; van Kamp, I. Aircraft and road traffic noise and children’s cognition and health: A cross-national study. Lancet 2005, 365, 1942–1949. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Kang, J. An Experimental Study on the Influence of Environmental Noise on Students’ Attention. In Proceedings of the 11th EuroNoise Conference, Crete. 2018. Available online: https://www.euronoise2018.eu/docs/papers/391_Euronoise2018.pdf (accessed on 28 October 2021).
Measurement Day | Season | Period | Duration | Classroom Occupancy |
---|---|---|---|---|
01/02/2021 | Winter | 16:00–17:40 | 100 min | 21 (19 students + 2 teachers) |
08/07/2021 | Summer | 10:00–11:40 | 100 min | 17 (15 students + 2 teachers) |
Scenario | Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | ||
---|---|---|---|---|---|---|---|
Scenario 1 | 8.6 | 7.6 | 8.2 | 7.7 | 7.5 | 7.9 | 0.47 |
Scenario 2 | 6.3 | 6.2 | 5.8 | 5.0 | 5.1 | 5.7 | 0.61 |
Scenario 3 | 5.1 | 4.4 | 5.5 | 4.2 | 4.4 | 4.7 | 0.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar, A.J.; de la Hoz-Torres, M.L.; Martínez-Aires, M.D.; Ruiz, D.P. Monitoring and Assessment of Indoor Environmental Conditions after the Implementation of COVID-19-Based Ventilation Strategies in an Educational Building in Southern Spain. Sensors 2021, 21, 7223. https://doi.org/10.3390/s21217223
Aguilar AJ, de la Hoz-Torres ML, Martínez-Aires MD, Ruiz DP. Monitoring and Assessment of Indoor Environmental Conditions after the Implementation of COVID-19-Based Ventilation Strategies in an Educational Building in Southern Spain. Sensors. 2021; 21(21):7223. https://doi.org/10.3390/s21217223
Chicago/Turabian StyleAguilar, Antonio J., María L. de la Hoz-Torres, Mª Dolores Martínez-Aires, and Diego P. Ruiz. 2021. "Monitoring and Assessment of Indoor Environmental Conditions after the Implementation of COVID-19-Based Ventilation Strategies in an Educational Building in Southern Spain" Sensors 21, no. 21: 7223. https://doi.org/10.3390/s21217223
APA StyleAguilar, A. J., de la Hoz-Torres, M. L., Martínez-Aires, M. D., & Ruiz, D. P. (2021). Monitoring and Assessment of Indoor Environmental Conditions after the Implementation of COVID-19-Based Ventilation Strategies in an Educational Building in Southern Spain. Sensors, 21(21), 7223. https://doi.org/10.3390/s21217223