Evaluation of Coating Thickness Using Lift-Off Insensitivity of Eddy Current Sensor
Abstract
:1. Introduction
2. Analytical Algorithms
2.1. Original Formulas—Inductance of Coils above a Dual-Layer Conductive Structure
2.2. Proposed Method—Eddy-Current Thin-Skin Algorithms for the Retrieval of Lift-Off
2.3. Proposed Method—Iterative Algorithms Based on a Lift-Off Insensitive Inductance for the Retrieval of Coating Thickness
3. Experiments
4. Result and Analysis
4.1. Retrieval of Lift-Off Distance
4.2. Effect of High Frequency on Lift-Off Retrieval
4.3. Retrieval of Coating Thickness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brayden, T.H., Jr.; Winters, T.D., Jr. Coating Thickness Measurement System and Method of Measuring a Coating Thickness. U.S. Patent 6,052,191, 18 April 2000. [Google Scholar]
- Wang, Y.; Fan, M.; Cao, B.; Ye, B.; Wen, D. Measurement of coating thickness using lift-off point of intersection features from pulsed eddy current signals. NDT E Int. 2020, 116, 102333. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, M.; Song, S.-J.; Kim, H.-J. Precision measurement of coating thickness on ferromagnetic tube using pulsed eddy current technique. Int. J. Precis. Eng. Manuf. 2015, 16, 1723–1728. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, Y.; Jiang, J.; Bai, L.; Zhang, B. Absorbing coating thickness measurement based on lift-off effect of eddy current testing. Int. J. Appl. Electromagn. Mech. 2014, 45, 323–330. [Google Scholar] [CrossRef]
- Kim, T.O.; Kim, H.Y.; Kim, C.M.; Ahn, J.H. Non-contact and in-process measurement of film coating thickness by combining two principles of eddy-current and capacitance sensing. CIRP Ann. 2007, 56, 509–512. [Google Scholar] [CrossRef]
- Tian, Y.; Rebinsky, D.A.; Kinney, C.A.; Luick, K. Eddy Current Based Method for Coating Thickness Measurement. U.S. Patent 9,377,287 B2, 28 June 2016. [Google Scholar]
- Yang, H.; Tai, C. Pulsed eddy-current measurement of a conducting coating on a magnetic metal plate. Meas. Sci. Technol. 2002, 13, 1259. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Y. Thickness and Conductivity Measurement of Multilayered Electricity-Conducting Coating by Pulsed Eddy Current Technique: Experimental Investigation. IEEE Trans. Instrum. Meas. 2019, 68, 3166–3172. [Google Scholar] [CrossRef]
- Tai, C.; James, H.R.; Moulder, J.C. Thickness and conductivity of metallic layers from pulsed eddy-current measurements. Rev. Sci. Instrum. 1996, 67, 3965–3972. [Google Scholar] [CrossRef] [Green Version]
- Kuts, I.V.; Protasov, A.G.; Lysenko, I.I.; Dugin, O.L. Pulsed Eddy Current Non-Destructive Testing of the Coating Thickness. In Proceedings of the The E-Journal of Nondestructive Testing: XI European Conference on Non-Destructive Testing, Prague, Czech Republic, 6–10 October 2014. [Google Scholar]
- He, Y.; Tian, G.; Zhang, H.; Alamin, M.; Simm, A.; Jackson, P. Steel corrosion characterization using pulsed eddy current systems. IEEE Sens. J. 2012, 12, 2113–2120. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, D.; Lai, C.; Tian, G. Quantitative approach for thickness and conductivity measurement of monolayer coating by dual-frequency eddy current technique. IEEE Trans. Instrum. Meas. 2017, 66, 1874–1882. [Google Scholar] [CrossRef]
- Antonelli, G.; Ruzzier, M.; Necci, F. Thickness measurement of MCrAlY high-temperature coatings by frequency scanning eddy current technique. J. Eng. Gas Turbines Power 1998, 120, 537–542. [Google Scholar] [CrossRef]
- Tai, C. Characterization of coatings on magnetic metal using the swept-frequency eddy current method. Rev. Sci. Instrum. 2000, 71, 3161–3167. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yu, Y.; Lai, C.; Tian, G. Thickness measurement of multi-layer conductive coatings using multifrequency eddy current techniques. Nondestruct. Test. Eval. 2016, 31, 191–208. [Google Scholar] [CrossRef]
- Shamgholi, M.; Riazi, S.M.; Abbasi, M.; Azimi, S. The Development of Eddy Current Nondestructive Testing Method for Coating Thickness Measurement on the Steel Sheets. In Proceedings of the 4th International Engineering Materials and Metallurgy Conference, Tehran, Iran, 10–11 November 2015. [Google Scholar]
- Nix, N. Methods for Eliminating Error Sources of Magnetic Sensors Used for the Measurement of Coating Thickness. U.S. Patent 6,724,187 B2, 20 April 2004. [Google Scholar]
- Cho, S.; Liu, H.C.; Ahn, H.; Lee, J.; Lee, H.-W. Eddy current brake with a two-layer structure: Calculation and characterization of braking performance. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Syas’ko, V.A.; Golubev, S.S.; Smorodinskii, Y.G.; Potapov, A.I.; Solomenchuk, P.V.; Smirnova, N.I. Measurement of electromagnetic parameters of metal-coating thickness measures. Russ. J. Nondestruct. Test. 2018, 54, 698–710. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Mao, Y.; Qi, Y. Quantitative evaluation of thermal barrier coating based on eddy current technique. NDT E Int. 2012, 50, 29–35. [Google Scholar]
- Bavall, L. Determination of coating thickness of a copper-plated steel wire by measurement of the internal wire impedance. IEEE Trans. Instrum. Meas. 1998, 47, 1013–1019. [Google Scholar] [CrossRef]
- Lu, M.; Xie, Y.; Zhu, W.; Peyton, A.; Yin, W. Determination of the magnetic permeability, electrical conductivity, and thickness of ferrite metallic plates using a multi-frequency electromagnetic sensing system. IEEE Trans. Ind. Inform. 2019, 15, 4111–4119. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, S.; Xie, Y.; Yin, W.; Peyton, A.J. A FPGA Based Platform for Multi-Frequency Eddy Current Testing. In Proceedings of the 11th European Conference on Non-Destructive Testing (ECNDT 2014), Prague, Czech Republic, 6–11 October 2014; pp. 6–10. [Google Scholar]
- Munjal, R.; Sajjad, F.; Wendler, F.; Kanoun, O. Multi-Frequency Inductive Sensor System for Classification of Bi-Metallic Coins. IEEE Trans. Instrum. Meas. 2020, 70, 1–9. [Google Scholar] [CrossRef]
- Wen, D.; Fan, M.; Cao, B.; Ye, B.; Tian, G. Extraction of LOI Features from Spectral Pulsed Eddy Current Signals for Evaluation of Ferromagnetic Samples. IEEE Sens. J. 2019, 19, 189–195. [Google Scholar] [CrossRef]
- Yin, W.; Peyton, A.J. Thickness measurement of non-magnetic plates using multi-frequency eddy current sensors. NDT E Int. 2007, 40, 43–48. [Google Scholar] [CrossRef]
- Chen, X.; Lei, Y. Electrical conductivity measurement of ferromagnetic metallic materials using pulsed eddy current method. NDT E Int. 2015, 75, 33–38. [Google Scholar] [CrossRef]
- Yang, G.; Dib, G.; Udpa, L.; Tamburrino, A.; Udpa, S.S. Rotating Field EC-GMR Sensor for Crack Detection at Fastener Site in Layered Structures. IEEE Sens. J. 2015, 15, 463–470. [Google Scholar] [CrossRef]
- Li, W.; Yuan, X.; Chen, G.; Ge, J.; Yin, X.; Li, K. High sensitivity rotating alternating current field measurement for arbitrary-angle underwater cracks. NDT E Int. 2016, 79, 123–131. [Google Scholar] [CrossRef]
- Vasic, D.; Bilas, V.; Ambrus, D. Pulsed eddy-current nondestructive testing of ferromagnetic tubes. IEEE Trans. Instrum. Meas. 2004, 53, 1289–1294. [Google Scholar] [CrossRef]
- Abidin, I.Z.; Mandache, C.; Tian, G.Y.; Morozov, M. Pulsed eddy current testing with variable duty cycle on rivet joints. NDT E Int. 2009, 42, 599–605. [Google Scholar] [CrossRef]
- Lu, M.; Meng, X.; Huang, R.; Chen, L.; Tang, Z.; Li, J.; Peyton, A.; Yin, W. Determination of surface crack orientation based on thin-skin regime using triple-coil drive-pickup eddy-current sensor. IEEE Trans. Instrum. Meas. 2020, 70, 1–9. [Google Scholar] [CrossRef]
- Lu, M.; Peyton, A.; Yin, W. Acceleration of frequency sweeping in eddy-current computation. IEEE Trans. Magn. 2017, 53, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Choi, D.; Kim, Y.; Lee, S. Signal characteristics of differential-pulsed eddy current sensors in the evaluation of plate thickness. NDT E Int. 2009, 42, 215–221. [Google Scholar] [CrossRef]
- Tian, G.Y.; Sophian, A. Reduction of lift-off effects for pulsed eddy current NDT. NDT E Int. 2005, 38, 319–324. [Google Scholar] [CrossRef]
- Egorov, A.V.; Polyakov, V.V.; Salita, D.S.; Kolubaev, E.A.; Psakhie, S.G.; Chernyavskii, A.G.; Vorobei, I.V. Inspection of aluminum alloys by a multi-frequency eddy current method. Def. Technol. 2015, 11, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Lu, M.; Chen, Z.; Zhou, L.; Yin, L.; Zhao, Q.; Peyton, A.; Li, Y.; Yin, W. Three-dimensional electromagnetic mixing models for dual-phase steel microstructures. Appl. Sci. 2018, 8, 529. [Google Scholar] [CrossRef] [Green Version]
- Theodoulidis, T.; Kriezis, E.E. Eddy Current Canonical Problems (with Applications to Nondestructive Evaluation); Tech Science Press: Henderson, NV, USA, 2006; ISBN 0-9717880-1-4. [Google Scholar]
- Tytko, G.; Dziczkowski, L. E-Cored Coil with a Circular Air Gap Inside the Core Column Used in Eddy Current Testing. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- Yin, W.; Peyton, A.J.; Dickinson, S.J. Simultaneous Measurement of Distance and Thickness of a Thin Metal Plate with an Electromagnetic Sensor Using a Simplified Model. IEEE Trans. Instrum. Meas. 2004, 53, 1135–1138. [Google Scholar] [CrossRef]
- Lu, M.; Xu, H.; Zhu, W.; Yin, L.; Zhao, Q.; Peyton, A.; Yin, W. Conductivity Lift-off Invariance and measurement of permeability for ferrite metallic plates. NDT E Int. 2018, 95, 36–44. [Google Scholar] [CrossRef]
- Lu, M.; Huang, R.; Yin, W.; Zhao, Q.; Peyton, A.J. Measurement of permeability for ferrous metallic plates using a novel lift-off compensation technique on phase signature. IEEE Sens. J. 2019, 19, 7440–7446. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Meng, X.; Yin, W.; Qu, Z.; Wu, F.; Tang, J.; Xu, H.; Huang, R.; Chen, Z.; Zhao, Q.; et al. Thickness measurement of non-magnetic steel plates using a novel planar triple-coil sensor. NDT E Int. 2019, 107, 102148. [Google Scholar] [CrossRef]
- Huang, R.; Lu, M.; Peyton, A.; Yin, W. Thickness measurement of metallic plates with finite planar dimension using eddy current method. IEEE Trans. Instrum. Meas. 2020, 69, 8424–8431. [Google Scholar] [CrossRef]
- Lu, M.; Meng, X.; Chen, L. Measurement of ferromagnetic slabs permeability based on a novel planar triple-coil sensor. IEEE Sens. J. 2020, 20, 2904–2910. [Google Scholar] [CrossRef]
- Avila, J.R.S.; Lu, M.; Huang, R.; Chen, Z.; Zhu, S.; Yin, W. Accurate measurements of plate thickness with variable lift-off using a combined inductive and capacitive sensor. NDT E Int. 2020, 110, 102202. [Google Scholar] [CrossRef]
- Meng, X.; Lu, M.; Yin, W.; Bennecer, A.; Kirk, K.J. Inversion of lift-off distance and thickness for non-magnetic metal using eddy current testing. IEEE Trans. Instrum. Meas. 2020, 70, 1–8. [Google Scholar] [CrossRef]
- Dodd, C.V.; Deeds, W.E. Analytical solutions to eddy-current probe-coil problems. J. Appl. Phys. 1968, 39, 2829–2838. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Zhu, W.; Yin, L.; Qu, Z. Reducing the lift-off effect on permeability measurement for magnetic plates from multifrequency induction data. IEEE Trans. Instrum. Meas. 2018, 67, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Yin, L.; Peyton, A.J.; Yin, W. A novel compensation algorithm for thickness measurement immune to lift-off variations using eddy current method. IEEE Trans. Instrum. Meas. 2016, 65, 2773–2779. [Google Scholar]
- Yin, W.; Tang, J.; Lu, M.; Huang, R.; Zhao, Q.; Zhang, Z.; Peyton, A. An equivalent-effect phenomenon in eddy current non-destructive testing of thin structures. IEEE Access 2019, 7, 70296–70307. [Google Scholar] [CrossRef]
- Chew, W.C. Waves and Fields in Inhomogenous Media; IEEE Press: New York, NY, USA, 1995; Chapter 2; pp. 4–10. [Google Scholar]
Electrical Conductivity (MS/m) | Relative Magnetic Permeability | Thickness (mm) | |
---|---|---|---|
Substrate—DP 1000 | 3.81 | 122 | 4.0 |
Coating—brass | 15.9 | 1 | 0.1, 0.3, 0.5 |
Coating—aluminium | 36.9 | 1 | 0.1, 0.3, 0.5 |
Parameters | Value |
---|---|
Inner radius (mm) | 19.0 |
Outer radius (mm) | 19.6 |
Turns N | 20 |
Gap g (mm) | 10.0 |
Coil height (mm) | 6.0 |
Heigh of sensor base (mm) | 4.0 |
Lift-offs (mm) | 1.0:1.0:10.0 |
Working frequency | |
Lift-off insensitive inductance (H) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Lu, M.; Yin, W.; Bennecer, A.; Kirk, K.J. Evaluation of Coating Thickness Using Lift-Off Insensitivity of Eddy Current Sensor. Sensors 2021, 21, 419. https://doi.org/10.3390/s21020419
Meng X, Lu M, Yin W, Bennecer A, Kirk KJ. Evaluation of Coating Thickness Using Lift-Off Insensitivity of Eddy Current Sensor. Sensors. 2021; 21(2):419. https://doi.org/10.3390/s21020419
Chicago/Turabian StyleMeng, Xiaobai, Mingyang Lu, Wuliang Yin, Abdeldjalil Bennecer, and Katherine J. Kirk. 2021. "Evaluation of Coating Thickness Using Lift-Off Insensitivity of Eddy Current Sensor" Sensors 21, no. 2: 419. https://doi.org/10.3390/s21020419
APA StyleMeng, X., Lu, M., Yin, W., Bennecer, A., & Kirk, K. J. (2021). Evaluation of Coating Thickness Using Lift-Off Insensitivity of Eddy Current Sensor. Sensors, 21(2), 419. https://doi.org/10.3390/s21020419