Virtual Reality-Incorporated Horse Riding Simulator to Improve Motor Function and Balance in Children with Cerebral Palsy: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Interventions
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Park, E.S.; Rha, D.W.; Shin, J.S.; Kim, S.; Jung, S. Effects of hippotherapy on gross motor function and functional performance of children with cerebral palsy. Yonsei Med. J. 2014, 55, 1736–1742. [Google Scholar] [CrossRef] [Green Version]
- Huijing, P.A.; Bénard, M.R.; Harlaar, J.; Jaspers, R.T.; Becher, J.G. Movement within foot and ankle joint in children with spastic cerebral palsy: A 3-dimensional ultrasound analysis of medial gastrocnemius length with correction for effects of foot deformation. BMC Musculoskelet. Disord. 2013, 14, 365. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, M.; Long, T.; Kennedy, E.; Bavishi, S. The efficacy of GMFM-88 and GMFM-66 to detect changes in gross motor function in children with cerebral palsy (CP): A literature review. Disabil. Rehabil. 2014, 36, 617–627. [Google Scholar] [CrossRef]
- Cunningham, B. The effect of hippotherapy on functional outcomes for children with disabilities: A pilot study. Pediatr. Phys. Ther. 2009, 21, 137–138. [Google Scholar] [CrossRef]
- McGee, M.C.; Reese, N.B. Immediate effects of a hippotherapy session on gait parameters in children with spastic cerebral palsy. Pediatr. Phys. Ther. 2009, 21, 212–218. [Google Scholar] [CrossRef]
- Shurtleff, T.L.; Standeven, J.W.; Engsberg, J.R. Changes in dynamic trunk/head stability and functional reach after hippotherapy. Arch. Phys. Med. Rehabil. 2009, 90, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Latella, D.; Langford, S. Hippotherapy; An Effective Approach to Occupational Therapy Intervention. OT Pract. 2008, 13, 16. [Google Scholar]
- Lee, C.-W.; Kim, S.G.; Na, S.S. The effects of hippotherapy and a horse riding simulator on the balance of children with cerebral palsy. J. Phys. Ther. Sci. 2014, 26, 423–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva e Borges, M.B.; Werneck, M.J.; da Silva Mde, L.; Gandolfi, L.; Pratesi, R. Therapeutic effects of a horse riding simulator in children with cerebral palsy. Arq. Neuropsiquiatr. 2011, 69, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Herrero, P.; Gomez-Trullen, E.M.; Asensio, A.; Garcia, E.; Casas, R.; Monserrat, E. Study of the therapeutic effects of a hippotherapy simulator in children with cerebral palsy: A stratified single-blind randomized controlled trial. Clin. Rehabil. 2012, 26, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Temcharoensuk, P.; Lekskulchai, R.; Akamanon, C.; Ritruechai, P.; Sutcharitpongsa, S. Effect of horseback riding versus a dynamic and static horse riding simulator on sitting ability of children with cerebral palsy: A randomized controlled trial. J. Phys. Ther. Sci. 2015, 27, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Meyns, P.; Roman de Mettelinge, T.; van der Spank, J.; Coussens, M.; Van Waelvelde, H. Motivation in pediatric motor rehabilitation: A systematic search of the literature using the self-determination theory as a conceptual framework. Dev. Neurorehabil. 2018, 21, 371–390. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.J.; Ku, K.H.; Park, Y.S.; Park, J.G.; Cho, E.S.; Seo, J.S.; Kim, C.W.; O, S.-H. Effects of Virtual Reality-Based Rehabilitation on Upper Extremity Function among Children with Cerebral Palsy. Healthcare 2020, 8, 391. [Google Scholar] [CrossRef]
- Saposnik, G.; Cohen, L.G.; Mamdani, M.; Pooyania, S.; Ploughman, M.; Cheung, D.; Shaw, J.; Hall, J.; Nord, P.; Dukelow, S.; et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): A randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016, 15, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Cho, C.; Hwang, W.; Hwang, S.; Chung, Y. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku J. Exp. Med. 2016, 238, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Franjoine, M.R.; Gunther, J.S.; Taylor, M.J. Pediatric balance scale: A modified version of the berg balance scale for the school-age child with mild to moderate motor impairment. Pediatr. Phys. Ther. 2003, 15, 114–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, D.J.; Rosenbaum, P.L.; Cadman, D.T.; Gowland, C.; Hardy, S.; Jarvis, S. The gross motor function measure: A means to evaluate the effects of physical therapy. Dev. Med. Child. Neurol. 1989, 31, 341–352. [Google Scholar] [CrossRef]
- Lundkvist Josenby, A.; Jarnlo, G.B.; Gummesson, C.; Nordmark, E. Longitudinal construct validity of the GMFM-88 total score and goal total score and the GMFM-66 score in a 5-year follow-up study. Phys. Ther. 2009, 89, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Russell, D.J.; Avery, L.M.; Rosenbaum, P.L.; Raina, P.S.; Walter, S.D.; Palisano, R.J. Improved scaling of the gross motor function measure for children with cerebral palsy: Evidence of reliability and validity. Phys. Ther. 2000, 80, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; You, J.S.H. Innovative robotic hippotherapy improves postural muscle size and postural stability during the quiet stance and gait initiation in a child with cerebral palsy: A single case study. NeuroRehabilitation 2018, 42, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Nam, K.S.; Son, S.M. Effects of Virtual Reality Horse Riding Simulator Training Using a Head-Mounted Display on Balance and Gait Functions in Children with Cerebral Palsy: A Preliminary Pilot Study. J. Korean Phys. Ther. 2019, 31, 273–278. [Google Scholar] [CrossRef]
- Hemachithra, C.; Meena, N.; Ramanathan, R.; Felix, A.J.W. Immediate effect of horse riding simulator on adductor spasticity in children with cerebral palsy: A randomized controlled trial. Physiother. Res. Int. 2020, 25, e1809. [Google Scholar] [CrossRef]
- Fattal-Valevski, A.; Domenievitz, D.; Giladi, N.; Wientroub, S.; Hayek, S. Long-term effect of repeated injections of botulinum toxin in children with cerebral palsy: A prospective study. J. Child. Orthop. 2008, 2, 29–35. [Google Scholar] [CrossRef]
- Hong, B.Y.; Chang, H.J.; Lee, S.J.; Lee, S.; Park, J.H.; Kwon, J.Y. Efficacy of Repeated Botulinum Toxin Type A Injections for Spastic Equinus in Children with Cerebral Palsy-A Secondary Analysis of the Randomized Clinical Trial. Toxins 2017, 9, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, S.M.; Tung, L.C.; Tang, Y.H.; Wang, C.H. Psychometric properties of functional balance assessment in children with cerebral palsy. Neurorehabil. Neural Repair 2008, 22, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.S.; Chung, J.H.; Jeon, H.S. Correlation between pediatric balance scale (PBS) and gross motor function measurement (GMFM) scores in children with cerebral palsy. J. Korean Soc. Phys. Med. 2010, 5, 281–288. [Google Scholar]
- Choi, H.-J.; Kim, K.-J.; Nam, K.-W. The effects of a horseback riding simulation exercise on the spinal alignment of children with cerebral palsy. J. Korean Phys. Ther. 2014, 26, 209–215. [Google Scholar]
- Westcott, S.L.; Burtner, P.A. Postural control in children: Implications for pediatric practice. Phys. Occup. Pediatr. 2004, 24, 5–55. [Google Scholar] [CrossRef] [PubMed]
- Silkwood-Sherer, D.J.; Killian, C.B.; Long, T.M.; Martin, K.S. Hippotherapy--an intervention to habilitate balance deficits in children with movement disorders: A clinical trial. Phys. Ther. 2012, 92, 707–717. [Google Scholar] [CrossRef]
- Wade, E.; Winstein, C.J. Virtual reality and robotics for stroke rehabilitation: Where do we go from here? Top. Stroke Rehabil. 2011, 18, 685–700. [Google Scholar] [CrossRef]
- Kwon, J.-Y.; Chang, H.J.; Yi, S.-H.; Lee, J.Y.; Shin, H.-Y.; Kim, Y.-H. Effect of hippotherapy on gross motor function in children with cerebral palsy: A randomized controlled trial. J. Altern. Complement. Med. 2015, 21, 15–21. [Google Scholar] [CrossRef] [PubMed]
Sex | Age (years) | Neuromotor Type | Height (cm) | Weight (kg) | GMFCS | |
Case 1 | M | 10 | Spastic Unilateral | 140.1 | 45.4 | I |
Case 2 | M | 7 | Spastic Unilateral | 122.1 | 22.2 | I |
Case 3 | M | 5 | Spastic Unilateral | 112.6 | 20.1 | I |
Case 4 | M | 12 | Spastic Bilateral | 154.6 | 56.0 | I |
Case 5 | F | 9 | Spastic Unilateral | 125.5 | 36.3 | I |
Case 6 | M | 11 | Ataxic | 154.9 | 68.7 | I |
Case 7 | F | 10 | Spastic Bilateral | 124.4 | 25.5 | II |
Case 8 | M | 13 | Spastic Bilateral | 145.5 | 58.6 | II |
Case 9 | M | 17 | Spastic Bilateral | 162.2 | 50.5 | II |
Case 10 | M | 8 | Spastic Bilateral | 107.8 | 19.0 | II |
Case 11 | F | 14 | Spastic Bilateral | 126.6 | 29.0 | II |
Case 12 | F | 10 | Spastic Bilateral | 121.4 | 23.5 | II |
Case 13 | M | 5 | Spastic Bilateral | 107.0 | 15.3 | III |
Case 14 | F | 13 | Spastic Bilateral | 136.0 | 41.0 | IV |
Case 15 | F | 6 | Spastic Bilateral | 103.0 | 17.3 | IV |
Case 16 | M | 11 | Spastic Bilateral | 136.6 | 40.0 | IV |
Mean ± SD | M: 10, F: 6 | 10.06 ± 0.84 | 130.64 ± 4.90 | 36.33 ± 4.46 |
Preintervention | Postintervention | p-Value | |
PBS (%) | 35.81 ± 15.68 | 40.63 ± 13.07 | 0.001 * |
GMFM-66 (%) | 69.26 ± 17.65 | 70.65 ± 18.47 | 0.006 * |
GMFM-88 (%) | |||
A | 94.98 ± 8.25 | 96.20 ± 5.43 | 0.285 |
B | 93.23 ± 16.14 | 93.86 ± 14.22 | 0.251 |
C | 85.57 ± 24.43 | 86.76 ± 22.32 | 0.178 |
D | 71.63 ± 30.80 | 73.56 ± 30.59 | 0.001 * |
E | 60.58 ± 34.84 | 61.29 ± 34.78 | 0.037 * |
Total | 81.20 ± 21.54 | 82.33 ± 20.28 | 0.021 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.J.; Jung, Y.G.; Park, Y.S.; O, S.H.; Kim, D.H.; Kim, C.W. Virtual Reality-Incorporated Horse Riding Simulator to Improve Motor Function and Balance in Children with Cerebral Palsy: A Pilot Study. Sensors 2021, 21, 6394. https://doi.org/10.3390/s21196394
Chang HJ, Jung YG, Park YS, O SH, Kim DH, Kim CW. Virtual Reality-Incorporated Horse Riding Simulator to Improve Motor Function and Balance in Children with Cerebral Palsy: A Pilot Study. Sensors. 2021; 21(19):6394. https://doi.org/10.3390/s21196394
Chicago/Turabian StyleChang, Hyun Jung, Yong Gi Jung, Young Sook Park, Se Hwi O, Da Hye Kim, and Chang Woo Kim. 2021. "Virtual Reality-Incorporated Horse Riding Simulator to Improve Motor Function and Balance in Children with Cerebral Palsy: A Pilot Study" Sensors 21, no. 19: 6394. https://doi.org/10.3390/s21196394
APA StyleChang, H. J., Jung, Y. G., Park, Y. S., O, S. H., Kim, D. H., & Kim, C. W. (2021). Virtual Reality-Incorporated Horse Riding Simulator to Improve Motor Function and Balance in Children with Cerebral Palsy: A Pilot Study. Sensors, 21(19), 6394. https://doi.org/10.3390/s21196394