Joining of Electrodes to Ultra-Thin Metallic Layers on Ceramic Substrates in Cryogenic Sensors †
Abstract
:1. Introduction
2. Materials and Methods
2.1. New Method of Soldering to Thin Metallic Layers
2.2. Instrumentation and Measurement Procedure
2.3. Thermo-Electrical Model of Joint
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lau, J.H. Recent Advances and New Trends in Flip Chip Technology. J. Electron. Packag. Trans. ASME 2016, 138, 030802. [Google Scholar] [CrossRef]
- Wojciechowski, D.; Vanfleteren, J.; Reese, E.; Hagedorn, H.-W. Electro-conductive adhesives for high density package and flip-chip interconnections. Microelectron. Reliab. 2000, 40, 1215–1226. [Google Scholar] [CrossRef]
- Charles, H.K. The Wirebonded interconnect: A mainstay for electronics. In Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging; Suhir, E., Lee, Y.C., Wong, C.P., Eds.; Springer Science + Business Media, Inc.: New York, NY, USA, 2007; Volume II, pp. 71–116. [Google Scholar]
- Salalha, W.; Zussman, E.; Bar-Yoseph, P.Z. Investigation of flip-chip bonding for MEMS applications. J. Electron. Packag. Trans. ASME 2004, 126, 48–51. [Google Scholar] [CrossRef] [Green Version]
- Hurni, C.A.; David, A.; Cich, M.J.; Aldaz, R.I.; Ellis, B.; Huang, K.; Tyagi, A.; DeLille, R.A.; Kraven, R.; Steranka, F.M.; et al. Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation. Appl. Phys. Lett. 2015, 106, 031101. [Google Scholar] [CrossRef]
- Chauhan, P.; Zhong, Z.W.; Pecht, M. Copper wire bonding concerns and best practices. J. Electron. Mater. 2013, 42, 2415–2434. [Google Scholar] [CrossRef]
- Ghaffarian, R. Area Array Technology for High Reliability Applications. In Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging; Suhir, E., Lee, Y.C., Wong, C.P., Eds.; Springer Science + Business Media, Inc.: New York, NY, USA, 2007; Volume I, pp. 283–311. [Google Scholar]
- Zhou, Y.; Hu, A.; Khan, M.I.; Wu, W.; Tam, B.; Yavuz, M. Recent progress in micro and nano-joining. J. Phys. Conf. Ser. 2009, 165, 012012. [Google Scholar] [CrossRef] [Green Version]
- Rahim, K.; Mian, A. A Review on Laser Processing in Electronic and MEMS Packaging. J. Electron. Packag. 2017, 139, 030801. [Google Scholar] [CrossRef]
- Xue, P.; Xue, S.-B.; Zhang, L.; Shen, Y.-F.; Gao, L.-L.; Yu, S.-L.; Zhu, H.; Han, Z.; Chen, Y. Tensile strength of fine pitch QFP lead-free soldered joints with diode laser soldering. Solder. Surf. Mt. Technol. 2011, 23, 177–183. [Google Scholar] [CrossRef]
- Pawlak, R.; Tomczyk, M.; Walczak, M. The favorable and unfavorable effects of oxide and intermetallic phases in conductive materials using laser micro technologies. Mater. Sci. Eng. B 2012, 177, 1273–1280. [Google Scholar] [CrossRef]
- Pawlak, R.; Tomczyk, M.; Walczak, M. Durability and reliability enhancement of selected electronic components achieved by laser technologies. In Proceedings of the 2017 MIXDES—24th International Conference Mixed Design of Integrated Circuits and Systems, Bydgoszcz, Poland, 22–24 June 2017; pp. 459–462. [Google Scholar]
- Zhao, N.; Zhong, Y.; Huang, M.L.; Ma, H.T.; Dong, W. Growth kinetics of Cu6 Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient. Sci. Rep. 2015, 5, 13491. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, P.A.; Schmitz, P.; Zaeh, M.F. Laser beam welding of electrical contacts for the application in stationary energy storage devices. J. Laser Appl. 2016, 28, 022423. [Google Scholar] [CrossRef]
- De Bono, P.; Blackburn, J. Laser welding of copper and aluminium battery interconnections. Proc. SPIE 2015, 9657, 96570M. [Google Scholar]
- Welch, W.; Chae, J.; Lee, S.-H.; Yazdi, N.; Najafi, K. Transient liquid phase (TLP) bonding for microsystem packaging applications. In Digest of Technical Papers, Proceedings of the International Conference on Solid State Sensors and Actuators and Microsystems, TRANSDUCERS ’05, Seoul, Korea, 5–9 June 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 2, pp. 1350–1353. [Google Scholar]
- Jung, D.H.; Sharma, A.; Mayer, M.; Jung, J.P. A review on recent advances in transient liquid phase (TLP) bonding for thermoelectric power module. Rev. Adv. Mater. Sci. 2018, 53, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Mustain, H.A.; Brown, W.D.; Ang, S.S. Transient liquid phase die attach for high-temperature silicon carbide power devices. IEEE Trans. Compon. Packag. Technol. 2010, 33, 563–570. [Google Scholar] [CrossRef]
- Eid, A.; Hester, J.; Fang, Y.; Tehrani, B.; Nauroze, S.A.; Bahr, R.; Tentzeris, M.M. Nanotechnology-Empowered Flexible Printed Wireless Electronics: A Review of Various Applications of Printed Materials. IEEE Nanotechnol. Mag. 2019, 13, 18–29. [Google Scholar] [CrossRef]
- Jeerapan, I.; Poorahong, S. Review-Flexible and Stretchable Electrochemical Sensing Systems: Materials, Energy Sources, and Integrations. J. Electrochem. Soc. 2020, 167, 037573. [Google Scholar] [CrossRef]
- Ismail, M.I.S.; Okamoto, Y.; Okada, A.; Uno, Y.; Ueoka, K. Direct micro-joining of flexible printed circuit and metal electrode by pulsed Nd:YAG laser. Int. J. Precis. Eng. Man. 2012, 13, 321–329. [Google Scholar] [CrossRef]
- Peng, P.; Hu, A.; Zhao, B.; Gerlich, A.P.; Zhou, Y.N. Reinforcement of Ag nanoparticle paste with nanowires for low temperature pressureless bonding. J. Mater. Sci. 2012, 47, 6801–6811. [Google Scholar] [CrossRef]
- Lebioda, M.; Pawlak, R. Influence of cryogenic temperatures on electrical properties of structures patterned by a laser in ITO/Ag/ITO layers. Phys. Status Solidi A Appl. Mater. Sci. 2016, 213, 1150–1156. [Google Scholar] [CrossRef]
- Pawlak, R.; Lebioda, M. Electrical and thermal properties of heater-sensor microsystems patterned in TCO films for wide-range temperature applications from 15 K to 350 K. Sensors 2018, 18, 1831. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, R.; Lebioda, M.; Rymaszewski, J.; Szymanski, W.; Kolodziejczyk, L.; Kula, P. A fully transparent flexible sensor for cryogenic temperatures based on high strength metallurgical graphene. Sensors 2017, 17, 51. [Google Scholar] [CrossRef]
- Lebioda, M.; Pawlak, R.; Szymański, W.; Kaczorowski, W.; Jeziorna, A. Laser patterning a graphene layer on a ceramic substrate for sensor applications. Sensors 2020, 20, 2134. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, L.; Kolacinski, Z.; Wiak, S.; Raniszewski, G.; Pietrzak, L. Synthesis of carbon nanotubes in thermal plasma reactor at atmospheric pressure. Nanomaterials 2017, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, R.W.; McCluskey, F.P. Reliability assessment of indium solder for low temperature electronic packaging. Cryogenics 2009, 49, 630–634. [Google Scholar] [CrossRef]
- Tsui, Y.; Surrey, E.; Hampshire, D. Soldered joints—An essential component of demountable high temperature superconducting fusion magnets. Supercond. Sci. Technol. 2016, 29, 075005. [Google Scholar] [CrossRef]
- Lebioda, M.; Pawlak, R.; Rymaszewski, J. Soldered joints of Ag electrode to ultra-thin metallic Au layer on ceramic substrate. In Journal of Physics: Conference Series, Proceedings of the 2020 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE 2020), Jastarnia, Poland, 13–16 September 2020; IOP Publishing: Bristol, UK, 2021; Volume 1782, p. 012017. [Google Scholar]
- AIM Solder, Manufacturer of Solder Materials for Electronics Industry. Available online: http://aimsolder.com (accessed on 25 June 2021).
- Chuang, R.W.; Lee, C.C. Silver-indium joints produced at low temperature for high temperature devices. IEEE Trans. Compon. Packag. Technol. 2002, 2, 453–458. [Google Scholar] [CrossRef]
- Zhang, W.; Ruythooren, W. Study of the Au/In reaction for transient liquid-phase bonding and 3D chip stacking. J. Electron. Mater. 2008, 37, 1095–1101. [Google Scholar] [CrossRef]
- Moser, Z.; Gasior, W.; Pstrus, J.; Zakulski, W.; Ohnuma, I.; Liu, X.J.; Inohana, Y.; Ishida, K. Studies of the Ag-In phase diagram and surface tension measurements. J. Electron. Mater. 2001, 30, 1120–1128. [Google Scholar] [CrossRef]
- Sohn, Y.C.; Wang, Q.; Ham, S.-J.; Jeong, B.G.; Jung, K.D.; Choi, M.S.; Kim, W.B.; Moon, C.Y. Wafer-level low temperature bonding with Au-In system. In Proceedings of the 57th Electronic Components and Technology Conference, Sparks, NV, USA, 29 May–1 June 2007. [Google Scholar]
- Liu, Y.M.; Chen, Y.L.; Chuang, T.H. Interfacial reactions between liquid indium and silver substrates. J. Electron. Mater. 2000, 29, 1047–1051. [Google Scholar] [CrossRef]
Sample A | Sample B | Sample C | |
---|---|---|---|
Solder | In | In | In |
Substrate | Al2O3 2 × 25 × 0.8 mm | Al2O3 2 × 25 × 0.8 mm | Al2O3 2 × 25 × 0.8 mm |
Metallic layer | Au 200 nm | Au 200 nm | Ag 200 nm |
Lead | Ag strip 2 × 15 × 0.035 mm | Au strip 2 × 15 × 0.05 mm | Ag strip 2 × 15 × 0.035 mm |
Flux | Paste flux NC 254 [31] | Paste flux NC 254 | Paste flux NC 254 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebioda, M.; Pawlak, R.; Rymaszewski, J. Joining of Electrodes to Ultra-Thin Metallic Layers on Ceramic Substrates in Cryogenic Sensors. Sensors 2021, 21, 4919. https://doi.org/10.3390/s21144919
Lebioda M, Pawlak R, Rymaszewski J. Joining of Electrodes to Ultra-Thin Metallic Layers on Ceramic Substrates in Cryogenic Sensors. Sensors. 2021; 21(14):4919. https://doi.org/10.3390/s21144919
Chicago/Turabian StyleLebioda, Marcin, Ryszard Pawlak, and Jacek Rymaszewski. 2021. "Joining of Electrodes to Ultra-Thin Metallic Layers on Ceramic Substrates in Cryogenic Sensors" Sensors 21, no. 14: 4919. https://doi.org/10.3390/s21144919
APA StyleLebioda, M., Pawlak, R., & Rymaszewski, J. (2021). Joining of Electrodes to Ultra-Thin Metallic Layers on Ceramic Substrates in Cryogenic Sensors. Sensors, 21(14), 4919. https://doi.org/10.3390/s21144919