Design and Validation of a Portable Machine Learning-Based Electronic Nose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Selection
2.2. Circuit Design
2.3. Data Acquisition
2.4. Calibration
2.5. Sample Preparation
2.6. Data Analysis
3. Results
3.1. E-Nose System
3.2. Calibration Experiment
3.3. Wine Experiment
3.4. Oil Experiment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zampolli, S.; Elmi, I.; Stürmann, J.; Nicoletti, S.; Dori, L.; Cardinali, G. Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column. Sens. Actuators B Chem. 2005, 105, 400–406. [Google Scholar] [CrossRef]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.D.; Baietto, M. Advances in electronic-nose technologies developed for biomedical applications. Sensors 2011, 11, 1105–1176. [Google Scholar] [CrossRef] [PubMed]
- Abdul, R.N.; Ammar, Z.; Nora, J.; Hadi, M.R. Applications of sensing material on quartz crystal microbalance in detection of volatile organic compounds: A review. Glob. J. Eng. Technol. Rev. 2017, 2, 10–22. [Google Scholar]
- Oprea, A.; Weimar, U. Gas sensors based on mass-sensitive transducers part 1: Transducers and receptors—Basic understanding. Anal. Bioanal. Chem. 2019, 411, 1761–1787. [Google Scholar] [CrossRef]
- Shim, D.-Y.; Chang, S.-M.; Kim, J.M. Development of fast resettable gravimetric aromatic gas sensors using quartz crystal microbalance. Sens. Actuators B Chem. 2021, 329, 129143. [Google Scholar] [CrossRef]
- Shurmer, H.V.; Gardner, J.W. Odour discrimination with an electronic nose. Sens. Actuators B Chem. 1992, 8, 1–11. [Google Scholar] [CrossRef]
- Berna, A. Metal oxide sensors for electronic noses and their application to food analysis. Sensors 2010, 10, 3882–3910. [Google Scholar] [CrossRef] [Green Version]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Tang, K.-T.; Chiu, S.-W.; Pan, C.-H.; Hsieh, H.-Y.; Liang, Y.-S.; Liu, S.-C. Development of a portable electronic nose system for the detection and classification of fruity odors. Sensors 2010, 10, 9179–9193. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-F.; Liu, S.-B.; Meng, F.-L.; Liu, J.-Y.; Jin, Z.; Kong, L.-T.; Liu, J.-H. Metal oxide nanostructures and their gas sensing properties: A review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef] [Green Version]
- Qi, P.-F.; Zeng, M.; Li, Z.-H.; Sun, B.; Meng, Q.-H. Design of a portable electronic nose for real-fake detection of liquors. Rev. Sci. Instrum. 2017, 88, 095001. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Portable electronic nose based on electrochemical sensors for food quality assessment. Sensors 2017, 17, 2715. [Google Scholar] [CrossRef] [Green Version]
- Haddi, Z.; Amari, A.; Alami, H.; El Bari, N.; Llobet, E.; Bouchikhi, B. A portable electronic nose system for the identification of cannabis-based drugs. Sens. Actuators B Chem. 2011, 155, 456–463. [Google Scholar] [CrossRef]
- Ozmen, A.; Dogan, E. Design of a portable E-nose instrument for gas classifications. IEEE Trans. Instrum. Meas. 2009, 58, 3609–3618. [Google Scholar] [CrossRef]
- Macías, M.M.; Agudo, J.E.; Manso, A.G.; Orellana, C.J.G.; Velasco, H.M.G.; Caballero, R.G. A compact and low cost electronic nose for aroma detection. Sensors 2013, 13, 5528–5541. [Google Scholar] [CrossRef] [Green Version]
- Amari, A.; El Bari, N.; Bouchikhi, B. Conception and development of a portable electronic nose system for classification of raw milk using principal component analysis approach. Sens. Transducers 2009, 102, 33. [Google Scholar]
- Chen, Y.; Liu, X.; Yang, J.; Xu, Y. A gas concentration estimation method based on multivariate relevance vector machine using MOS gas sensor arrays. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–5. [Google Scholar]
- Xu, K.; Wang, J.; Wei, Z.; Deng, F.; Wang, Y.; Cheng, S. An optimization of the MOS electronic nose sensor array for the detection of Chinese pecan quality. J. Food Eng. 2017, 203, 25–31. [Google Scholar] [CrossRef]
- Li, D.; Lei, T.; Zhang, S.; Shao, X.; Xie, C. A novel headspace integrated E-nose and its application in discrimination of Chinese medical herbs. Sens. Actuators B Chem. 2015, 221, 556–563. [Google Scholar] [CrossRef]
- Green, G.C.; Chan, A.D.; Dan, H.; Lin, M. Using a metal oxide sensor (MOS)-based electronic nose for discrimination of bacteria based on individual colonies in suspension. Sens. Actuators B Chem. 2011, 152, 21–28. [Google Scholar] [CrossRef]
- Askim, J.R.; Mahmoudi, M.; Suslick, K.S. Optical sensor arrays for chemical sensing: The optoelectronic nose. Chem. Soc. Rev. 2013, 42, 8649–8682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonah, E.; Huang, X.; Yi, R.; Aheto, J.H.; Osae, R.; Golly, M. Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm. J. Food Process Eng. 2019, 42, e13236. [Google Scholar] [CrossRef]
- Gębicki, J.; Szulczyński, B. Discrimination of selected fungi species based on their odour profile using prototypes of electronic nose instruments. Measurement 2018, 116, 307–313. [Google Scholar] [CrossRef]
- Sahgal, N.; Magan, N. Fungal volatile fingerprints: Discrimination between dermatophyte species and strains by means of an electronic nose. Sens. Actuators B Chem. 2008, 131, 117–120. [Google Scholar] [CrossRef]
- Campagnoli, A.; Cheli, F.; Polidori, C.; Zaninelli, M.; Zecca, O.; Savoini, G.; Pinotti, L.; Dell’Orto, V. Use of the electronic nose as a screening tool for the recognition of durum wheat naturally contaminated by deoxynivalenol: A preliminary approach. Sensors 2011, 11, 4899–4916. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Heo, Y.; Lee, J.J.; Deering, A.; Bae, E. Smartphone-based lateral flow imaging system for detection of food-borne bacteria E. coli O157: H7. J. Microbiol. Methods 2020, 168, 105800. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Coronel-Aguilera, C.; Doh, I.-J.; Min, H.J.; Lim, T.; Applegate, B.M.; Bae, E. Design and application of a portable luminometer for bioluminescence detection. Appl. Opt. 2020, 59, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jung, Y.; Doh, I.-J.; Lozano-Mahecha, R.A.; Applegate, B.; Bae, E. Smartphone-based low light detection for bioluminescence application. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Hunter, G.W.; Akbar, S.; Bhansali, S.; Daniele, M.; Erb, P.D.; Johnson, K.; Liu, C.-C.; Miller, D.; Oralkan, O.; Hesketh, P.J.; et al. Editors’ choice—Critical review—A critical review of solid state gas sensors. J. Electrochem. Soc. 2020, 167, 037570. [Google Scholar] [CrossRef]
- Peterson, P.J.; Aujla, A.; Grant, K.H.; Brundle, A.G.; Thompson, M.R.; Vande Hey, J.; Leigh, R.J. Practical use of metal oxide semiconductor gas sensors for measuring nitrogen dioxide and ozone in urban environments. Sensors 2017, 17, 1653. [Google Scholar] [CrossRef] [PubMed]
Classifier | Type | Sensitivity | Specificity | PPV | NPV | Accuracy |
---|---|---|---|---|---|---|
Linear discriminant | Zinfandel | 1 | 1 | 1 | 1 | 1 |
Cabernet sauvignon | 1 | 1 | 1 | 1 | 1 | |
Pinot noir | 1 | 0.8889 | 1 | 0.9643 | 0.9722 | |
Merlot | 0.963 | 1 | 0.9 | 1 | 0.9722 | |
Quadratic discriminant | Zinfandel | 1 | 1 | 1 | 1 | 1 |
Cabernet sauvignon | 1 | 1 | 1 | 1 | 1 | |
Pinot noir | 1 | 0.5 | 1 | 0.8571 | 0.875 | |
Merlot | 0.833 | 1 | 0.6667 | 1 | 0.875 | |
Linear SVM | Zinfandel | 1 | 1 | 1 | 1 | 1 |
Cabernet sauvignon | 1 | 1 | 1 | 1 | 1 | |
Pinot noir | 1 | 0.944 | 1 | 0.9818 | 0.9861 | |
Merlot | 0.9815 | 1 | 0.9474 | 1 | 0.9861 | |
Quadratic SVM | Zinfandel | 1 | 1 | 1 | 1 | 1 |
Cabernet sauvignon | 1 | 1 | 1 | 1 | 1 | |
Pinot noir | 1 | 0.944 | 1 | 0.9818 | 0.9861 | |
Merlot | 0.9815 | 1 | 0.9474 | 1 | 0.9861 | |
Bayes Gaussian | Zinfandel | 1 | 1 | 1 | 1 | 1 |
Cabernet sauvignon | 1 | 0.5 | 1 | 0.8571 | 0.875 | |
Pinot noir | 1 | 0.833 | 1 | 0.9474 | 0.9583 | |
Merlot | 0.7778 | 1 | 0.6 | 1 | 0.8333 | |
KNN fine | Zinfandel | 1 | 1 | 1 | 1 | 1 |
Cabernet sauvignon | 1 | 0.5 | 1 | 0.8571 | 0.875 | |
Pinot noir | 1 | 0.9444 | 1 | 0.9818 | 0.9861 | |
Merlot | 0.8148 | 1 | 0.6429 | 1 | 0.8611 |
Classifier. | Type | Sensitivity | Specificity | PPV | NPV | Accuracy |
---|---|---|---|---|---|---|
Quadratic discriminant | Grapeseed oil | 1 | 0.2 | 1 | 0.7143 | 0.7333 |
Peanut oil | 0.115 | 0.95 | 0.3493 | 0.8214 | 0.3933 | |
Olive oil | 0.96 | 0 | 0 | 0.6575 | 0.64 | |
Quadratic SVM | Grapeseed oil | 1 | 1 | 1 | 1 | 1 |
Peanut oil | 0.945 | 0.91 | 0.8922 | 0.9545 | 0.9333 | |
Olive oil | 0.955 | 0.89 | 0.9082 | 0.9455 | 0.9333 | |
Cubic SVM | Grapeseed oil | 1 | 1 | 1 | 1 | 1 |
Peanut oil | 0.855 | 0.4 | 0.5797 | 0.7403 | 0.7033 | |
Olive oil | 0.7 | 0.71 | 0.542 | 0.8284 | 0.7033 | |
Fine Tree | Grapeseed oil | 1 | 1 | 1 | 1 | 1 |
Peanut oil | 0.57 | 0.86 | 0.5 | 0.8906 | 0.6667 | |
Olive oil | 0.93 | 0.14 | 0.5 | 0.6838 | 0.6667 | |
KNN fine | Grapeseed oil | 1 | 0.89 | 1 | 0.9479 | 0.9633 |
Peanut oil | 0.86 | 0.54 | 0.6585 | 0.789 | 0.7533 | |
Olive oil | 0.715 | 0.72 | 0.5581 | 0.8363 | 0.7167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Doh, I.-J.; Bae, E. Design and Validation of a Portable Machine Learning-Based Electronic Nose. Sensors 2021, 21, 3923. https://doi.org/10.3390/s21113923
Huang Y, Doh I-J, Bae E. Design and Validation of a Portable Machine Learning-Based Electronic Nose. Sensors. 2021; 21(11):3923. https://doi.org/10.3390/s21113923
Chicago/Turabian StyleHuang, Yixu, Iyll-Joon Doh, and Euiwon Bae. 2021. "Design and Validation of a Portable Machine Learning-Based Electronic Nose" Sensors 21, no. 11: 3923. https://doi.org/10.3390/s21113923
APA StyleHuang, Y., Doh, I.-J., & Bae, E. (2021). Design and Validation of a Portable Machine Learning-Based Electronic Nose. Sensors, 21(11), 3923. https://doi.org/10.3390/s21113923