Performance Study of a Zirconia-Doped Fiber for Distributed Temperature Sensing by OFDR at 800 °C
Abstract
:1. Introduction
2. Fiber Fabrication and Characterizations at Room Temperature
2.1. Fabrication and Characterization of Zirconia-Doped Optical Fiber
2.1.1. Fabrication of the Zirconia-Doped Optical Fiber
2.1.2. Physical, Chemical and Optical Characterizations of the Preform and the Optical Fiber
2.2. OFDR Measurements at Room Temperature on SMF-28 Fiber and ZrO2-Doped FIBER
2.2.1. OFDR Measurement Parameters
2.2.2. OFDR Signals of SMF-28 and ZrO2-Doped Fibers at Room Temperature before Heat Treatment
3. OFDR Sensing Results of Tests at 800 °C
3.1. OFDR Measurement Conditions for Temperature Sensing Performance Tests
3.2. OFDR Temperature Measurements during Heat Treatment at 800 °C
3.3. Evolution of OFDR Signal Amplitude for Both Fibers after Heat Treatment
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
B1 | B2 | B3 | C1 | C2 | C3 |
---|---|---|---|---|---|
0.6961663 | 0.4079426 | 0.8974794 | 0.0684043² | 0.1162414² | 9.896161² |
References
- Kersey, A.D. A Review of Recent Developments in Fiber Optic Sensor Technology. Opt. Fiber Technol. 1996, 2, 291–317. [Google Scholar] [CrossRef]
- Othonos, A. Fiber Bragg gratings. Rev. Sci. Instrum. 1997, 68, 4309–4341. [Google Scholar] [CrossRef]
- Morey, W.W.; Dunphy, J.R.; Meltz, G. Multiplexing fiber Bragg grating sensors. In Proceedings of the SPIE OE Fiber, Boston, MA, USA, 1 January 1992; pp. 216–224. [Google Scholar]
- Ferdinand, P. The Evolution of Optical Fiber Sensors Technologies During the 35 Last Years and Their Applications in Structure Health Monitoring. In Proceedings of the EWSHM-7th European Workshop on Structural Health Monitoring, Nantes, France, 8 July 2014. [Google Scholar]
- Eickhoff, W.F.; Ulrich, R.F. Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett. 1981, 39, 693–695. [Google Scholar] [CrossRef]
- Soller, B.J.; Wolfe, M.; Froggatt, M.E. Polarization Resolved Measurement of Rayleigh Backscatter in Fiber-Optic Components. In Proceedings of the Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Anaheim, CA, USA, 6 April 2005; p. NWD3. [Google Scholar]
- Yan, A.D.; Huang, S.; Li, S.; Chen, R.Z.; Ohodnicki, P.; Buric, M.; Lee, S.W.; Li, M.J.; Chen, K.P. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, K.; Wu, J.; Li, Y.; Yang, Y.; Huang, S.; Zhao, J.; Tweedle, T.; Carpenter, D.; Zheng, G.; et al. Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications. Int. J. Extrem. Manuf. 2021, 3, 025401. [Google Scholar] [CrossRef]
- Buric, M.; Ohodnicki, P.; Yan, A.; Huang, S.; Chen, K.P. Distributed fiber-optic sensing in a high-temperature solid-oxide fuel cell. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA; p. 11.
- Bos, J.; Klein, J.; Froggatt, M.; Sanborn, E.; Gifford, D. Fiber optic strain, temperature and shape sensing via OFDR for ground, air and space applications. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 24 September 2013; p. 15. [Google Scholar]
- Roman, M.; Balogun, D.; Zhuang, Y.; Gerald, R.E.; Bartlett, L.; O’Malley, R.J.; Huang, J. A Spatially Distributed Fiber-Optic Temperature Sensor for Applications in the Steel Industry. Sensors 2020, 20, 3900. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, K.; Huang, S.; Wu, J.; Lu, P.; Ohodnicki, P.R.; Lu, P.; Li, M.J.; Mihailov, S.J.; Chen, K.P. Reel-to-Reel Fabrication of In-Fiber Low-Loss and High-Temperature Stable Rayleigh Scattering Centers for Distributed Sensing. IEEE Sens. J. 2020, 20, 11335–11341. [Google Scholar] [CrossRef]
- Gifford, D.K.; Soller, B.J.; Wolfe, M.S.; Froggatt, M.E. Distributed fiber-optic temperature sensing using Rayleigh backscatter. In Proceedings of the ECOC 2005, Glasgow, UK, 25–29 September 2005; pp. 511–512. [Google Scholar]
- Loranger, S.; Gagne, M.; Lambin-Iezzi, V.; Kashyap, R. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre. Sci. Rep. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- De Miguel-Soto, V.; Leandro, D.; Lopez-Aldaba, A.; Beato-López, J.; Pérez-Landazábal, J.; Auguste, J.; Jamier, R.; Roy, P.; Lopez-Amo, M. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements. Sensors 2017, 17, 2773. [Google Scholar] [CrossRef] [Green Version]
- Wegmuller, M.; Oberson, P.; Guinnard, O.; Huttner, B.; Guinnard, L.; Vinegoni, C.; Gisin, N. Distributed Gain Measurements in Er-Doped Fibers with High Resolution and Accuracy Using an Optical Frequency Domain Reflectometer. J. Lightwave Technol. 2000, 18, 2127. [Google Scholar] [CrossRef]
- Loranger, S.; Parent, F.; Lambin-Iezzi, V.; Kashyap, R. Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: An order of magnitude increase in distributed sensing sensitivity. In Proceedings of the SPIE OPTO, San Francisco, CA, USA, 24 February 2016. [Google Scholar]
- Gifford, D.K.; Froggatt, M.E.; Kreger, S.T. High precision, high sensitivity distributed displacement and temperature measurements using OFDR-based phase tracking. In Proceedings of the 21st International Conference on Optical Fibre Sensors (OFS21), Ottawa, ON, Canada, 15–19 May 2011; p. 4. [Google Scholar]
- Westbrook, P.S.; Feder, K.S.; Ortiz, R.M.; Kremp, T.; Monberg, E.M.; Wu, H.; Simoff, D.A.; Shenk, S. Kilometer length, low loss enhanced back scattering fiber for distributed sensing. In Proceedings of the 25th Optical Fiber Sensors Conference (OFS), Jeju, Korea, 24–28 April 2017; pp. 1–5. [Google Scholar]
- Wilson, B.A.; Blue, T.E. Creation of an Internal Cladding in Sapphire Optical Fiber Using the 6Li(n, α)3H Reaction. IEEE Sens. J. 2017, 17, 7433–7439. [Google Scholar] [CrossRef]
- Chen, K.; Yan, A.D.; Huang, S.; Chen, R.Z.; Li, S. Ultrafast Laser Enhanced Rayleigh Scattering Characteristics in D-Shaped Fibers for High-Temperature Distributed Chemical Sensing. In Proceedings of the Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), Sydney, Australia, 5 September 2016; p. BTh4B.4. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wirley: New York, NY, USA, 1998. [Google Scholar]
- Blanc, W.; Mauroy, V.; Nguyen, L.; Shivakiran Bhaktha, B.N.; Sebbah, P.; Pal, B.P.; Dussardier, B. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition. J. Am. Ceram. Soc. 2011, 94, 2315–2318. [Google Scholar] [CrossRef] [Green Version]
- Fuertes, V.; Grégoire, N.; Labranche, P.; Gagnon, S.; Wang, R.; Ledemi, Y.; LaRochelle, S.; Messaddeq, Y. Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers. Sci. Rep. 2021, 11, 9116. [Google Scholar] [CrossRef]
- Sypabekova, M.; Korganbayev, S.; Blanc, W.; Ayupova, T.; Bekmurzayeva, A.; Shaimerdenova, M.; Dukenbayev, K.; Molardi, C.; Tosi, D. Fiber optic refractive index sensors through spectral detection of Rayleigh backscattering in a chemically etched MgO-based nanoparticle-doped fiber. Opt. Lett. 2018, 43, 5945–5948. [Google Scholar] [CrossRef] [Green Version]
- Chamorovskiy, Y.K.; Butov, O.V.; Kolosovskiy, A.O.; Popov, S.M.; Voloshin, V.V.; Vorob’ev, I.L.; Vyatkin, M.Y. Metal-coated Bragg grating reflecting fibre. Opt. Fiber Technol. 2017, 34, 30–35. [Google Scholar] [CrossRef]
- Popov, S.M.; Butov, O.V.; Kolosovskiy, A.O.; Voloshin, V.V.; Vorob’ev, I.L.; Vyatkin, M.Y.; Fotiadi, A.A.; Chamorovskiy, Y.K. Optical fibres with arrays of FBG: Properties and application. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Spring (PIERS), St Petersburg, Russia, 22–25 May 2017; pp. 1568–1573. [Google Scholar]
- Wang, M.; Zaghloul, M.A.S.B.; Huang, S.; Yan, A.; Li, S.; Zou, R.; Ohodnicki, P.; Buric, M.; Li, M.-J.; Carpenter, D.; et al. Ultrafast Laser Enhanced Rayleigh Backscattering on Silica Fiber for Distributed Sensing under Harsh Environment. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13 May 2018; p. ATh3P.4. [Google Scholar]
- Townsend, J.E.; Poole, S.B.; Payne, D.N. Solution-doping technique for fabrication of rare-earth-doped optical fibres. Electron. Lett. 1987, 23, 329–331. [Google Scholar] [CrossRef] [Green Version]
- Pastre, A.; Cristini-Robbe, O.; Bois, L.; Chassagneux, F.; Branzea, D.; Boe, A.; Kinowski, C.; Raulin, K.; Rolland, N.; Bernard, R. Zirconia coating for enhanced thermal stability of gold nanoparticles. Mater. Res. Express 2016, 3, 1–9. [Google Scholar] [CrossRef]
- Le Rouge, A.; El Hamzaoui, H.; Capoen, B.; Bernard, R.; Cristini-Robbe, O.; Martinelli, G.; Cassagne, C.; Boudebs, G.; Bouazaoui, M.; Bigot, L. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol–gel derived silica glass. Mater. Res. Express 2015, 2, 055009. [Google Scholar] [CrossRef]
- Warren, B.E. X-Ray determination of the structure of glass. J. Am. Ceram. Soc. 1934, 17, 249–254. [Google Scholar] [CrossRef]
- Joo, J.; Yu, T.; Kim, Y.W.; Park, H.M.; Wu, F.; Zhang, J.Z.; Hyeon, T. Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals. J. Am. Chem. Soc. 2003, 125, 6553–6557. [Google Scholar] [CrossRef]
- Garvie, R.C. The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect. J. Phys. Chem. 1965, 69, 1238–1243. [Google Scholar] [CrossRef]
- Garvie, R.C. Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 1978, 82, 218–224. [Google Scholar] [CrossRef]
- Brasse, G.; Restoin, C.; Auguste, J.; Roy, P.; Leparmentier, S.; Blondy, J. Conception, elaboration and characterization of silica-zirconia. Based nanostructured optical fiber obtained by the sol-gel process. WSEAS Trans. Adv. Eng. Educ. 2009, 6, 45–54. [Google Scholar]
- Howard, C.J.; Hill, R.J.; Reichert, B.E. Structures of ZrO2 polymorphs at room temperature by high-resolution neutron powder diffraction. Acta Crystallogr. Sect. B 1988, 44, 116–120. [Google Scholar] [CrossRef]
- Brückner, V. To the use of Sellmeier formula. In Elements of Optical Networking-Basics and Practise of Optical Data Communication; Springer: Berlin/Heidelberg, Germany, 2011; p. 194. [Google Scholar]
- Soller, B.J.; Gifford, D.K.; Wolfe, M.S.; Froggatt, M.E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt. Express 2005, 13, 666–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lingle, R.; Peckham, D.W.; McCurdy, A.; Kim, J. Chapter 2-Light-Guiding Fundamentals and Fiber Design. In Specialty Optical Fibers Handbook; Méndez, A., Morse, T.F., Eds.; Academic Press: Burlington, NJ, USA, 2007; pp. 19–68. [Google Scholar] [CrossRef]
- Corning. Corning SMF-28 Optical Fiber-Product Information; Corning: Corning, NY, USA, 2002; Volume PI1036. [Google Scholar]
- Sakaguchi, S.; Todoroki, S. Rayleigh scattering of silica core optical fiber after heat treatment. Appl. Opt. 1998, 37, 7708–7711. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
SMF-28 Fiber | ZrO2-Doped Fiber | |
---|---|---|
Refractive index difference (at 960 nm) | 5.1 × 10−3 | 8.1 × 10−3 |
ng (at 1573 nm) | 1.4679 | 1.4709 |
OFDR enhancement compared to SMF-28 fiber 1 (dB) | Undefined | 40.5 |
OFDR losses (dB/m) | ~0 | −2.8 |
Enhanced fiber length (m) | Undefined | 14.5 |
ZrO2-Doped Fiber | First Cyclic Test Step at 23.2 h 803 ± 6 °C | Last Cyclic-Test Step at 34.7 h 800 ± 6 °C | ||
---|---|---|---|---|
Calculations along the Furnace Stable Zone | Average | Standard Deviation | Average | Standard Deviation |
Temperature measured by OFDR (°C) | 800 | 4 | 807 | 4 |
ZrO2-Doped Fiber Characteristics | Before Heat Treatment | After Heat Treatment | |
---|---|---|---|
After Annealing | After Cyclic Test | ||
OFDR amplitude enhancement compared to SMF-28 fiber (dB) | 40.5 | 40.9 | 41.1 |
OFDR amplitude increase induced by heat treatment (dB) | Undefined | 0.4 | 0.6 |
OFDR amplitude losses (dB/m) | 2.8 | 3.1 | 3.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulot, P.; Bernard, R.; Cieslikiewicz-Bouet, M.; Laffont, G.; Douay, M. Performance Study of a Zirconia-Doped Fiber for Distributed Temperature Sensing by OFDR at 800 °C. Sensors 2021, 21, 3788. https://doi.org/10.3390/s21113788
Bulot P, Bernard R, Cieslikiewicz-Bouet M, Laffont G, Douay M. Performance Study of a Zirconia-Doped Fiber for Distributed Temperature Sensing by OFDR at 800 °C. Sensors. 2021; 21(11):3788. https://doi.org/10.3390/s21113788
Chicago/Turabian StyleBulot, Patrick, Rémy Bernard, Monika Cieslikiewicz-Bouet, Guillaume Laffont, and Marc Douay. 2021. "Performance Study of a Zirconia-Doped Fiber for Distributed Temperature Sensing by OFDR at 800 °C" Sensors 21, no. 11: 3788. https://doi.org/10.3390/s21113788
APA StyleBulot, P., Bernard, R., Cieslikiewicz-Bouet, M., Laffont, G., & Douay, M. (2021). Performance Study of a Zirconia-Doped Fiber for Distributed Temperature Sensing by OFDR at 800 °C. Sensors, 21(11), 3788. https://doi.org/10.3390/s21113788