Detection of Gas Drifting Near the Ground by Drone Hovering Over: Using Airflow Generated by Two Connected Quadcopters †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Connected Quadcopters
2.2. Gas Detection Experiments
2.3. Flight Experiments
3. Results of Gas Detection Experiments
3.1. Gas Detection at an Elevated Height
3.2. Range of Gas Detection
4. Results of Flight Experiments
4.1. Experiment without Cross-Flow
4.2. Experiment with Cross-Flow
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kowadlo, G.; Russell, R.A. Robot odor localization: A taxonomy and survey. Int. J. Robot. Res. 2008, 27, 869–894. [Google Scholar] [CrossRef]
- Ishida, H.; Wada, Y.; Matsukura, H. Chemical sensing in robotic applications: A review. IEEE Sens. J. 2012, 12, 3163–3173. [Google Scholar] [CrossRef]
- Hernandez Bennetts, V.; Lilienthal, A.J.; Neumann, P.P.; Trincavelli, M. Mobile robots for localizing gas emission sources on landfill sites: Is bio-inspiration the way to go? Front. Neuroeng. 2012, 4, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abichou, T.; Chanton, J.; Powelson, D.; Fleiger, J.; Escoriaza, S.; Lei, Y.; Stern, J. Methane flux and oxidation at two types of intermediate landfill covers. Waste Manag. 2006, 26, 1305–1312. [Google Scholar] [CrossRef]
- Ishigaki, T.; Yamada, M.; Nagamori, M.; Ono, Y.; Inoue, Y. Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature. Environ. Geol. 2005, 48, 845–853. [Google Scholar] [CrossRef]
- Bamberger, R.J., Jr.; Watson, D.P.; Scheidt, D.H.; Moore, K.L. Flight demonstrations of unmanned aerial vehicle swarming concepts. Johns Hopkins APL Tech. Dig. 2006, 27, 41–55. [Google Scholar]
- Badia, S.B.; Bernardet, U.; Guanella, A.; Pyk, P.; Verschure, P.F.M.J. A biologically based chemo-sensing UAV for humanitarian demining. Int. J. Adv. Robot. Syst. 2007, 4, 187–198. [Google Scholar] [CrossRef]
- Ishida, H. Blimp robot for three-dimensional gas distribution mapping in indoor environment. AIP Conf. Proc. 2009, 1137, 61–64. [Google Scholar] [CrossRef]
- Neumann, P.P.; Asadi, S.; Lilienthal, A.J.; Bartholmai, M.; Schiller, J.H. Autonomous gas-sensitive microdrone: Wind vector estimation and gas distribution mapping. IEEE Robot. Autom. Mag. 2012, 19, 50–61. [Google Scholar] [CrossRef]
- Rossi, M.; Brunelli, D. Autonomous gas detection and mapping with unmanned aerial vehicles. IEEE Trans. Instrum. Meas. 2016, 65, 765–775. [Google Scholar] [CrossRef]
- Frish, M.B.; Wainner, R.T.; Green, B.D.; Laderer, M.C.; Allen, M.G. Standoff gas leak detectors based on tunable diode laser absorption spectroscopy. Proc. SPIE 2005, 6010, 86–94. [Google Scholar] [CrossRef]
- Emran, B.J.; Tannant, D.D.; Najjaran, H. Low-altitude aerial methane concentration mapping. Remote Sens. 2017, 9, 823. [Google Scholar] [CrossRef] [Green Version]
- Neumann, P.P.; Kohlhoff, H.; Hüllmann, D.; Lilienthal, A.J.; Kluge, M. Bringing mobile robot olfaction to the next dimension––UAV-based remote sensing of gas clouds and source localization. In Proceedings of the IEEE International Conference on Robotics and Automation, Singapore, 29 May–3 June 2017; pp. 3910–3916. [Google Scholar] [CrossRef]
- Neumann, P.P.; Hernandez Bennetts, V.; Lilienthal, A.J.; Bartholmai, M.; Schiller, J.H. Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms. Adv. Robot. 2013, 27, 725–738. [Google Scholar] [CrossRef]
- Golston, L.M.; Aubut, N.F.; Frish, M.B.; Yang, S.; Talbot, R.W.; Gretencord, C.; McSpiritt, J.; Zondlo, M.A. Natural gas fugitive leak detection using an unmanned aerial vehicle: Localization and quantification of emission rate. Atmosphere 2018, 9, 333. [Google Scholar] [CrossRef] [Green Version]
- Takei, Y.; Kanazawa, Y.; Hirasawa, K.; Nanto, H. Development of 3D gas source localization using multi-copter with gas sensor array. In Proceedings of the ISOCS/IEEE International Symposium on Olfaction and Electronic Nose, Fukuoka, Japan, 26–29 May 2019; pp. 52–55. [Google Scholar] [CrossRef]
- Burgués, J.; Hernández, V.; Lilienthal, A.J.; Marco, S. Smelling nano aerial vehicle for gas source localization and mapping. Sensors 2019, 19, 478. [Google Scholar] [CrossRef] [Green Version]
- Eu, K.S.; Yap, K.M.; Tee, T.H. An airflow analysis study of quadrotor based flying sniffer robot. Appl. Mech. Mater. 2014, 627, 246–250. [Google Scholar] [CrossRef]
- Luo, B.; Meng, Q.-H.; Wang, J.-Y.; Ma, S.-G. Simulate the aerodynamic olfactory effects of gas-sensitive UAVs: A numerical model and its parallel implementation. Adv. Eng. Softw. 2016, 102, 123–133. [Google Scholar] [CrossRef]
- Dewan, A.; Dutta, R.; Srinivasan, B. Recent trends in computation of turbulent jet impingement heat transfer. Heat Transf. Eng. 2012, 33, 447–460. [Google Scholar] [CrossRef]
- Abdel-Fattah, A. Numerical and experimental study of turbulent impinging twin-jet flow. Exp. Therm. Fluid Sci. 2007, 31, 1061–1072. [Google Scholar] [CrossRef]
- Li, Q.; Page, G.J.; McGuirk, J.J. Large-eddy simulation of twin impinging jets in cross-flow. Aeronaut. J. 2007, 111, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Weigand, B.; Spring, S. Multiple jet impingement––A review. Heat Transf. Res. 2011, 42, 101–142. [Google Scholar] [CrossRef]
- Tanaka, K.; Koguchi, S.; Sato, R.; Ramirez, J.P.R.; Matsukura, H.; Ishida, H. Using airflows generated by multicopter for gas detection in midair. In Proceedings of the 17th International Meeting on Chemical Sensors, Vienna, Austria, 15–19 July 2018; pp. 470–471. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Hsi, P.C. Photo-Ionization Detector for Volatile Gas Measurement. U.S. Patent 5,773,833, 30 June 1998. [Google Scholar]
- Yamanaka, T.; Ishida, H.; Nakamoto, T.; Moriizumi, T. Analysis of gas sensor transient response by visualizing instantaneous gas concentration using smoke. Sens. Actuators A Phys. 1998, 69, 77–81. [Google Scholar] [CrossRef]
- Li, J.-G.; Meng, Q.-H.; Wang, Y.; Zeng, M. Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm. Auton. Robots 2011, 30, 281–292. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, R.; Tanaka, K.; Ishida, H.; Koguchi, S.; Pauline Ramos Ramirez, J.; Matsukura, H.; Ishida, H. Detection of Gas Drifting Near the Ground by Drone Hovering Over: Using Airflow Generated by Two Connected Quadcopters. Sensors 2020, 20, 1397. https://doi.org/10.3390/s20051397
Sato R, Tanaka K, Ishida H, Koguchi S, Pauline Ramos Ramirez J, Matsukura H, Ishida H. Detection of Gas Drifting Near the Ground by Drone Hovering Over: Using Airflow Generated by Two Connected Quadcopters. Sensors. 2020; 20(5):1397. https://doi.org/10.3390/s20051397
Chicago/Turabian StyleSato, Ryohei, Kento Tanaka, Hanako Ishida, Saki Koguchi, Jane Pauline Ramos Ramirez, Haruka Matsukura, and Hiroshi Ishida. 2020. "Detection of Gas Drifting Near the Ground by Drone Hovering Over: Using Airflow Generated by Two Connected Quadcopters" Sensors 20, no. 5: 1397. https://doi.org/10.3390/s20051397
APA StyleSato, R., Tanaka, K., Ishida, H., Koguchi, S., Pauline Ramos Ramirez, J., Matsukura, H., & Ishida, H. (2020). Detection of Gas Drifting Near the Ground by Drone Hovering Over: Using Airflow Generated by Two Connected Quadcopters. Sensors, 20(5), 1397. https://doi.org/10.3390/s20051397