Validation of Low-Cost Sensors in Measuring Real-Time PM10 Concentrations at Two Sites in Delhi National Capital Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Instrumentation
2.3. Methodology
2.4. Statistical Analysis
3. Results and Discussion
3.1. Consistency Test among the Sensors
3.2. Time Series of Measured PM10 Concentrations
3.3. Distribution Pattern and Pairwise Correlation of Measured PM10 Data
- A comparison of identical sensors generally revealed the highest agreement. Nevertheless, attempting more statistical analyses might have thrown light onto the cause of even the very slight variations among them. Accessory measurements indicating ambient temperature, humidity, and aerosol refractive index were not included in this study. The optics-based detection of particulates is probably affected by relative humidity. The uptake of moisture by hygroscopic particulates leads to increased scattered light signals. An attempt to calibrate these Atmos devices, especially for PM10 measurements with longer deployment duration, may help to explore more potential impacts from the variables such as relative humidity and temperature;
- Among the limitations of the study, lower and upper detection limits are also an expected factor in sensor performance not considered in this case. Hence, to ensure complete accuracy, the PM sensors need to be deployed in the environments where they can be tested for its performance at extreme extents. A longer duration of PM sensor deployment featuring high and low concentrations would be a challenge;
- Data from research-grade adjacent instruments (SMPS–APS and SMPS–OPS) were proven as suitable for PM measurements. However, to the best of our knowledge, no previous study using these instruments for similar applications is available. Hence, we suggest looking deeper into the data accuracy and uncertainties from these instruments as well as those being used as references;
- Transparency remained an issue with the many sensor developers where algorithms applied are valuable intellectual property. Developers and researchers should explicitly document independent algorithms to put faith in air sensor data. Hagler et al. [13] have also reported that trust in the developed sensors could augment when manufacturers would share which factors they integrated while post-processing the raw data;
- Likewise, most of the other available PM sensors studied Plantower PMS7003 also had no inertial-based size cuts preventing large particles from moving towards the optical chamber. It is therefore expected that it might affect the precision of readings to some extent as well. The limitations of this study also act as points to be considered as the future scope that may further serve with more information.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chowdhury, S.; Dey, S.; Smith, K.R. Ambient PM2.5 exposure expected premature mortality to 2100 in India under climate change scenarios. Nat. Commun. 2018, 9, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishnan, K.; Dey, S.; Gupta, T.; Dhaliwal, R.S.; Brauer, M.; Cohen, A.J.; Stanaway, J.D.; Beig, G.; Joshi, T.K.; Aggarwal, A.N.; et al. The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The Global Burden of Disease Study 2017. Lancet Planet. Health 2019, 3, e26–e39. [Google Scholar] [CrossRef] [Green Version]
- Chang, I.C. Identifying Leading Nodes of PM2. 5 Monitoring Network in Taiwan with Big Data-oriented Social Network Analysis. Aerosol Air Qual. Res. 2019, 19, 2844–2864. [Google Scholar] [CrossRef]
- Chen, S.; Cui, K.; Yu, T.Y.; Chao, H.R.; Hsu, Y.C.; Lu, I.C.; Arcega, R.D.; Tsai, M.H.; Lin, S.L.; Chao, W.C.; et al. A big data analysis of PM2.5 and PM10 from low cost air quality sensors near traffic areas. Aerosol Air Qual. Res. 2019, 19, 1721–1733. [Google Scholar] [CrossRef] [Green Version]
- Munir, S.; Mayfield, M.; Coca, D.; Jubb, S.A.; Osammor, O. Analysing the performance of low-cost air quality sensors, their drivers, relative benefits and calibration in cities—A case study in Sheffield. Environ. Monit. Assess. 2019, 191, 94. [Google Scholar] [CrossRef] [Green Version]
- Simmhan, Y.; Nair, S.; Monga, S.; Sahu, R.; Dixit, K.; Sutaria, R.; Mishra, B.; Sharma, A.; SVR, A.; Hegde, M.; et al. SATVAM: Toward an IoT Cyber-infrastructure for Low-cost Urban Air Quality Monitoring. In Proceedings of the 15th IEEE International Conference on E-Science, San Diego, CA, USA, 24–27 September 2019. [Google Scholar]
- Zheng, T.; Bergin, M.H.; Johnson, K.K.; Tripathi, S.N.; Shirodkar, S.; Landis, M.S.; Sutaria, R.; Carlson, D.E. Field evaluation of low-cost particulate matter sensors in high-and low-concentration environments. Atmos. Meas. Tech. 2018, 11, 4823–4846. [Google Scholar] [CrossRef] [Green Version]
- Cheadle, L.; Deanes, L.; Sadighi, K.; Gordon Casey, J.; Collier-Oxandale, A.; Hannigan, M. Quantifying Neighborhood-Scale Spatial Variations of Ozone at Open Space and Urban Sites in Boulder, Colorado Using Low-Cost Sensor Technology. Sensors 2017, 17, 2072. [Google Scholar] [CrossRef] [Green Version]
- Ballamajalu, R.; Nair, S.; Chhabra, S.; Monga, S.K.; SVR, A.; Hegde, M.; Simmhan, Y.; Sharma, A.; Choudhary, C.M.; Sutaria, R.; et al. Toward SATVAM: An IoT Network for Air Quality Monitoring. ArXiv Preprint 2018, arXiv:1811.07847. Available online: https://arxiv.org/pdf/1811.07847.pdf (accessed on 8 August 2019).
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Guttikunda, S. It’s about Time We Got Smarter about Monitoring Our Air Pollution. Available online: https://thewire.in/environment/air-pollution-monitoring-diwali-pm2-5-pm10-cpcb-namp (accessed on 12 November 2019).
- Lewis, A.C.; Peltier, W.R.; von Schneidemesser, E. Low-Cost Sensors for the Measurement of Atmospheric Composition: Overview of Topic and Future Applications; No. 1215; World Meteorological Organization WMO: Geneva, Switzerland, 2018; Available online: http://eprints.whiterose.ac.uk/135994/ (accessed on 14 December 2019).
- Hagler, G.S.; Williams, R.; Papapostolou, V.; Polidori, A. Air Quality Sensors and Data Adjustment Algorithms: When Is It No Longer a Measurement? Environ. Sci. Technol. 2018, 52, 5530–5531. Available online: https://pubs.acs.org/doi/10.1021/acs.est.8b01826 (accessed on 14 December 2019). [CrossRef] [Green Version]
- Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.P.; Lv, Q.; Hannigan, M.; et al. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring. Atmos. Meas. Tech. 2014, 7, 3325–3336. [Google Scholar] [CrossRef] [Green Version]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre, M.; Gerboles, M. Review of small commercial sensors for indicative monitoring of ambient gas. Chem. Eng. Trans. 2012, 30, 169–174. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Schwarz, A.D.; Meyer, J.; Dittler, A. Opportunities for Low-Cost Particulate Matter Sensors in Filter Emission Measurements. Chem. Eng. Technol. 2018, 41, 1826–1832. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.; Edwards, P. Validate personal air-pollution sensors. Nature 2016, 535, 29. [Google Scholar] [CrossRef] [Green Version]
- Levy Zamora, M.; Xiong, F.; Gentner, D.R.; Kerkez, B.; Kohrman-Glaser, J.; Koehler, K. Field and Laboratory Evaluations of the low-cost Plantower Particulate Matter Sensor. Environ. Sci. Technol. 2019, 53, 838–849. [Google Scholar] [CrossRef]
- EPA: National ambient air quality standards for particulate matter. Final Rule Fed. Regist. 2013, 78, 3086–3287.
- Johnson, K.K.; Bergin, M.H.; Russell, A.G.; Hagler, G.S. Field Test of Several Low-Cost Particulate Matter Sensors in High and Low Concentration Urban Environments. Aerosol Air Qual. Res. 2018, 18, 565–578. [Google Scholar] [CrossRef]
- Buonanno, G.; Dell’Isola, M.; Stabile, L.; Viola, A. Uncertainty Budget of the SMPS–APS System in the Measurement of PM1, PM2. 5, and PM10. Aerosol Sci. Technol. 2009, 43, 1130–1141. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077. [Google Scholar] [CrossRef]
- Shen, S.; Jaques, P.A.; Zhu, Y.; Geller, M.D.; Sioutas, C. Evaluation of the SMPS–APS system as a continuous monitor for measuring PM2.5, PM10 and coarse (PM2.5−10) concentrations. Atmos. Environ. 2002, 36, 3939–3950. [Google Scholar] [CrossRef]
- Zerrath, A.; Beeston, M.; Bischof, O.; Horn, H.G.; Krinke, T.; Johnson, T.; Erickson, K. Comparison of a new optical particle sizer to reference sizing instruments for urban aerosol monitoring. Presented at The Meeting of European Aerosol Conference, Manchester, UK, 4–9 September 2011. [Google Scholar]
- Kumar, P.; Skouloudis, A.N.; Bell, M.; Viana, M.; Carotta, M.C.; Biskos, G.; Morawska, L. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci. Total Environ. 2016, 560, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, A.C.; Kumar, P.; Pilla, F.; Skouloudis, A.N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-user perspective of low-cost sensors for outdoor air pollution monitoring. Sci. Total Environ. 2017, 607, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Clements, A.L.; Griswold, W.G.; Rs, A.; Johnston, J.E.; Herting, M.M.; Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Low-cost air quality monitoring tools: From research to practice (a workshop summary). Sensors 2017, 17, 2478. [Google Scholar] [CrossRef] [Green Version]
- Dholakia, H.H.; Garg, A. Climate Change, Air Pollution and Human Health in Delhi, India. In Climate Change and Air Pollution. Springer Climate; Akhtar, R., Palagiano, C., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Pal, R.; Chowdhury, S.; Dey, S.; Sharma, A.R. 18-Year Ambient PM2. 5 Exposure and Night Light Trends in Indian Cities: Vulnerability Assessment. Aerosol Air Qual. Res. 2018, 18, 2332–2342. [Google Scholar] [CrossRef] [Green Version]
- Austin, E.; Novosselov, I.; Seto, E.; Yost, M.G. Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor. PLoS ONE 2015, 10, e0137789. [Google Scholar] [CrossRef]
- Kelly, K.E.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [Google Scholar] [CrossRef]
- Stolzenburg, M.R.; McMurry, P.H. Accuracy of recovered moments for narrow mobility distributions obtained with commonly used inversion algorithms for mobility size spectrometers. Aerosol Sci. Technol. 2018, 52, 614–625. [Google Scholar] [CrossRef] [Green Version]
- Sowlat, M.H.; Hasheminassab, S.; Sioutas, C. Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF). Atmos. Chem. Phys. 2016, 16, 4849–4866. [Google Scholar] [CrossRef] [Green Version]
- Tritscher, T.; Koched, A.; Han, H.S.; Filimundi, E.; Johnson, T.; Elzey, S.; Avenido, A.; Kykal, C.; Bischof, O.F. Multi-Instrument Manager Tool for Data Acquisition and Merging of Optical and Electrical Mobility Size Distributions. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2015; Volume 617, p. 012013. [Google Scholar] [CrossRef] [Green Version]
- Han, H.S.; Sreenath, A.; Birkeland, N.T.; Chancellor, G.J. Method for Combining Electrical Mobility and Optical Size Distributions for Wide Range Particle Size Distribution Measurement. In Proceedings of the 7th Asian Aerosol Conference, Xian, China, 17–20 August 2011; p. 153. [Google Scholar]
- Devi, J.J.; Tripathi, S.N.; Gupta, T.; Singh, B.N.; Gopalakrishnan, V.; Dey, S. Observation-based 3-D view of aerosol radiative properties over Indian Continental Tropical Convergence Zone: Implications to regional climate. Tellus B Chem. Phys. Meteorol. 2011, 63, 971–989. [Google Scholar] [CrossRef] [Green Version]
- Misra, A.; Gaur, A.; Bhattu, D.; Ghosh, S.; Dwivedi, A.K.; Dalai, R.; Debjyoti, P.; Gupta, T.; Tare, V.; Mishra, S.K.; et al. An overview of the physico-chemical characteristics of dust at Kanpur in the central Indo-Gangetic basin. Atmos. Environ. 2014, 97, 386–396. [Google Scholar] [CrossRef]
- Ann, L.; O’Rourke, N.; Hatcher, L.; Stepanski, E.J. JMP® for Basic Univariate and Multivariate Statistics: A Step-by-Step Guide; SAS Institute Inc.: Cary, NC, USA, 2005. [Google Scholar]
- Well, A.D.; Myers, J.L. Research Design and Statistical Analysis, 2nd ed.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 2003. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; Available online: http://www.utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf (accessed on 15 December 2019).
- Nagar, P.K.; Sharma, M.; Das, D. A new method for trend analyses in PM10 and impact of crop residue burning in Delhi, Kanpur and Jaipur, India. Urban Clim. 2019, 27, 193–203. [Google Scholar] [CrossRef]
- Patel, S.; Li, J.; Pandey, A.; Pervez, S.; Chakrabarty, R.K.; Biswas, P. Spatio-temporal measurement of indoor particulate matter concentrations using a wireless network of low-cost sensors in households using solid fuels. Environ. Res. 2017, 152, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Collingwood, S.; Zmoos, J.; Pahler, L.; Wong, B.; Sleeth, D.; Handy, R. Investigating measurement variation of modified low-cost particle sensors. J. Aerosol Sci. 2019, 135, 21–32. [Google Scholar] [CrossRef]
- Sayahi, T.; Butterfield, A.; Kelly, K.E. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ. Pollut. 2019, 245, 932–940. [Google Scholar] [CrossRef]
- Di Antonio, A.; Popoola, O.A.M.; Ouyang, B.; Saffell, J.; Jones, R.L. Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter. Sensors 2018, 18, 2790. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Stanton, L.G.; Graham, A.R.; Roberts, P.T. Assessing the Utility of Low-Cost Particulate Matter Sensors over a 12-Week Period in the Cuyama Valley of California. Sensors 2017, 17, 1805. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.; Hopke, P.K.; Pipal, A.S.; Srivastava, A.K.; Bisht, D.S.; Tiwari, S.; Singh, A.K.; Soni, V.K.; Attri, S.D. Intra-urban variability of particulate matter (PM2. 5 and PM10) and its relationship with optical properties of aerosols over Delhi, India. Atmos. Res. 2015, 166, 223–232. [Google Scholar] [CrossRef]
- Cusworth, D.H.; Mickley, L.J.; Sulprizio, M.P.; Liu, T.; Marlier, M.E.; DeFries, R.S.; Guttikunda, S.K.; Gupta, P. Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India. Environ. Res. Lett. 2018, 13, 044018. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/aab303/pdf (accessed on 12 December 2019). [CrossRef] [Green Version]
- Liu, T.; Marlier, M.E.; DeFries, R.S.; Westervelt, D.M.; Xia, K.R.; Fiore, A.M.; Mickley, L.J.; Cusworth, D.H.; Milly, G. Seasonal impact of regional outdoor biomass burning on air pollution in three Indian cities: Delhi, Bengaluru, and Pune. Atmos. Environ. 2018, 172, 83–92. [Google Scholar] [CrossRef]
- Pant, P.; Shukla, A.; Kohl, S.D.; Chow, J.C.; Watson, J.G.; Harrison, R.M. Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources. Atmos. Environ. 2015, 109, 178–189. [Google Scholar] [CrossRef]
- Kuula, J.; Mäkelä, T.; Hillamo, R.; Timonen, H. Response characterization of an inexpensive aerosol sensor. Sensors 2017, 17, 2915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagpure, A.S.; Gurjar, B.R.; Kumar, V.; Kumar, P. Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi. Atmos. Environ. 2016, 127, 118–124. [Google Scholar] [CrossRef]
- Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Parmita, P.; Srivastava, M.K.; Attri, S.D. Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmos. Res. 2013, 125, 50–62. [Google Scholar] [CrossRef]
- Guttikunda, S.K.; Kopakka, R.V. Source emissions and health impacts of urban air pollution in Hyderabad, India. Air Qual. Atmos. Health 2014, 7, 195–207. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M.; Tripathi, S.N. Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: Impact of biomass burning emissions in the Indo-Gangetic Plain. Environ. Sci. Technol. 2012, 46, 686–695. Available online: https://pubs.acs.org/doi/pdf/10.1021/es202857w (accessed on 10 December 2019). [CrossRef]
- Szymanski, W.W.; Nagy, A.; Czitrovszky, A. Optical particle spectrometry—Problems and prospects. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 918–929. [Google Scholar] [CrossRef]
- Hand, J.L.; Kreidenweis, S.M. A new method for retrieving particle refractive index and effective density from aerosol size distribution data. Aerosol Sci. Technol. 2002, 36, 1012–1026. Available online: https://www.tandfonline.com/doi/abs/10.1080/02786820290092276 (accessed on 10 December 2019). [CrossRef]
- Marquez-Viloria DBotero-Valencia, J.S.; Villegas-Ceballos, J. A low cost georeferenced air-pollution measurement system used as early warning tool. In Proceedings of the 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, Colombia, 30 August–2 September 2016; pp. 1–6. Available online: https://ieeexplore.ieee.org/abstract/document/7743366 (accessed on 10 December 2019).
Instruments | MRIU | IITD | ||||
---|---|---|---|---|---|---|
rs | Slope | Intercept (µg·m−3) | rs | Slope | Intercept (µg·m−3) | |
SMPS–OPS Vs. PMS7003 | 0.83 | 1.069 | 42.883 | 0.64 | 0.787 | 47.269 |
SMPS–APS Vs. SMPS–OPS | 0.92 | 0.782 | 1.640 | - | - | - |
SMPS–APS Vs. PMS7003 | 0.83 | 1.188 | 53.396 | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahu, R.; Dixit, K.K.; Mishra, S.; Kumar, P.; Shukla, A.K.; Sutaria, R.; Tiwari, S.; Tripathi, S.N. Validation of Low-Cost Sensors in Measuring Real-Time PM10 Concentrations at Two Sites in Delhi National Capital Region. Sensors 2020, 20, 1347. https://doi.org/10.3390/s20051347
Sahu R, Dixit KK, Mishra S, Kumar P, Shukla AK, Sutaria R, Tiwari S, Tripathi SN. Validation of Low-Cost Sensors in Measuring Real-Time PM10 Concentrations at Two Sites in Delhi National Capital Region. Sensors. 2020; 20(5):1347. https://doi.org/10.3390/s20051347
Chicago/Turabian StyleSahu, Ravi, Kuldeep Kumar Dixit, Suneeti Mishra, Purushottam Kumar, Ashutosh Kumar Shukla, Ronak Sutaria, Shashi Tiwari, and Sachchida Nand Tripathi. 2020. "Validation of Low-Cost Sensors in Measuring Real-Time PM10 Concentrations at Two Sites in Delhi National Capital Region" Sensors 20, no. 5: 1347. https://doi.org/10.3390/s20051347
APA StyleSahu, R., Dixit, K. K., Mishra, S., Kumar, P., Shukla, A. K., Sutaria, R., Tiwari, S., & Tripathi, S. N. (2020). Validation of Low-Cost Sensors in Measuring Real-Time PM10 Concentrations at Two Sites in Delhi National Capital Region. Sensors, 20(5), 1347. https://doi.org/10.3390/s20051347