# Wind Profiling in the Lower Atmosphere from Wind-Induced Perturbations to Multirotor UAS

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Modeling Framework

#### 2.2. Aircraft System Identification

#### 2.2.1. Multirotor UAS Platform

#### 2.2.2. System Identification Flight Testing

#### 2.2.3. Model Structure Determination

#### 2.2.4. Parameter Estimation

#### 2.2.5. Model Validation

#### 2.3. Observer Synthesis

## 3. Experimental Validation of Wind Estimates

#### 3.1. Field Experiment Setup

#### 3.2. Comparison with Ground-Based Observations

## 4. Results

#### 4.1. System Identification

#### 4.1.1. Model Structure Determination

#### 4.1.2. Parameter Estimation

#### 4.1.3. Model Validation

#### 4.2. Comparison of Wind Velocity Measurements

#### 4.2.1. Sonic Anemometer and SoDAR Comparison

#### 4.2.2. SoDAR Comparison

#### 4.2.3. Validation of Quadrotor Wind Estimates

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

ABL | Atmospheric boundary layer |

AGL | Above ground level |

AHRS | Attitude and heading reference system |

Cov | Covariance |

LR | Long range |

MDE | Mean difference error |

Par. | Parameter |

PTH | Pressure, temperature, and relative humidity |

RMSE | Root mean squared error |

SA | Sonic Anemometer |

SNR | Signal-to-noise ratio |

SoDAR | Sound detection and ranging |

SR | Short range |

UAS | Unmanned aircraft system |

ctrl | Control |

ref | Reference |

## Appendix A. A Reliability Study of SoDAR Wind Measurements

**Figure A2.**Noise intensity values for

**u**and

**v**wind velocity observations from the LR-SoDAR at (

**a**) 110 m AGL, (

**b**) 70 m AGL, and (

**c**) 30 m AGL.

**Figure A3.**Singal-to-noise ratios for

**u**and

**v**wind velocity observations from the LR-SoDAR at (

**a**) 110 m AGL, (

**b**) 70 m AGL, and (

**c**) 30 m AGL.

**Figure A4.**Noise intensity for

**u**and

**v**wind velocity observations from the SR-SoDAR at (

**a**) 110 m AGL, (

**b**) 70 m AGL, and (

**c**) 30 m AGL.

**Figure A5.**Signal-to-noise ratios for

**u**and

**v**wind velocity observations from the SR-SoDAR at (

**a**) 110 m AGL, (

**b**) 70 m AGL, and (

**c**) 30 m AGL.

## Appendix B. Quadrotor Wind Velocity Profiles

**Figure A6.**Comparison of wind speed and wind direction profiles from the SoDAR and quadrotor ascending vertically at 1.0 m/s between 10 and 120 m AGL from (

**a**) 17:38 to 17:40 EDT, (

**b**) 17:41 to 17:42 EDT, and (

**c**) 17:43 to 17:45 EDT.

**Figure A7.**Comparison of wind speed and wind direction profiles from the SoDAR and quadrotor ascending vertically at 1.5 m/s between 10 and 120 m AGL from (

**a**) 18:45 to 18:46 EDT, (

**b**) 18:47 to 18:48 EDT, (

**c**) 18:49 to 18:51 EDT, and (

**d**) 18:52 to 18:53 EDT.

**Figure A8.**Comparison of wind speed and wind direction profiles from the SoDAR and quadrotor ascending vertically at 2.0 m/s between 10 and 120 m AGL from (

**a**) 19:07 to 19:08 EDT, (

**b**) 19:09 to 19:10 EDT, (

**c**) 19:11 to 19:12 EDT, and (

**d**) 19:13 to 19:14 EDT.

## Appendix C. Sensitivity of Wind Estimates to Parameter Variations

## References

- González-Rocha, J.; Woolsey, C.A.; Sultan, C.; De Wekker, S.F.J. Sensing wind from quadrotor motion. J. Guid. Control. Dyn.
**2019**, 42, 836–852. [Google Scholar] [CrossRef] - González-Rocha, J.; Woolsey, C.A.; Sultan, C.; De Wekker, S.F. Model-based wind profiling in the lower atmosphere with multirotor UAS. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 1598. [Google Scholar]
- Barbieri, L.; Kral, S.T.; Bailey, S.C.C.; Frazier, A.E.; Jacob, J.D.; Reuder, J.; Brus, D.; Chilson, P.B.; Crick, C.; Detweiler, C.; et al. Intercomparison of small unmanned aircraft system (sUAS) measurements for atmospheric science during the LAPSE-RATE campaign. Sensors
**2019**, 19, 2179. [Google Scholar] [CrossRef] [Green Version] - Jacob, J.; Chilson, P.; Houston, A.; Smith, S. Considerations for atmospheric measurements with small unmanned aircraft systems. Atmosphere
**2018**, 9, 252. [Google Scholar] [CrossRef] [Green Version] - Chilson, P.B.; Bell, T.M.; Brewster, K.A.; de Azevedo, G.B.H.; Carr, F.H.; Carson, K.; Doyle, W.; Fiebrich, C.A.; Greene, B.R.; Grimsley, J.L.; et al. Moving towards a network of autonomous UAS atmospheric profiling stations for observations in the Earth’s lower atmosphere: The 3D mesonet oncept. Sensors
**2019**, 19, 2720. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Smith, S.W.; Chilson, P.B.; Houston, A.L.; Jacob, J.D. Catalyzing collaboration for multi-disciplinary UAS development with a flight campaign focused on meteorology and atmospheric physics. In Proceedings of the AIAA Scitech 2017 Forum, Grapevine, TX, USA, 9–13 January 2017; p. 1156. [Google Scholar]
- Villa, T.; Gonzalez, F.; Miljievic, B.; Ristovski, Z.; Morawska, L. An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives. Sensors
**2016**, 16, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Nolan, P.J.; Pinto, J.; González-Rocha, J.; Jensen, A.; Vezzi, C.; Bailey, S.; de Boer, G.; Diehl, C.; Laurence, R.; Powers, C.; et al. Coordinated unmanned aircraft system (UAS) and ground-based weather measurements to predict Lagrangian coherent structures (LCSs). Sensors
**2018**, 18, 4448. [Google Scholar] [CrossRef] [Green Version] - Nolan, P.J.; McClelland, H.G.; Woolsey, C.A.; Ross, S.D. A method for detecting atmospheric Lagrangian coherent structures using a single fixed-wind unmanned aircraft system. Sensors
**2019**, 19, 1607. [Google Scholar] [CrossRef] [Green Version] - Carranza, V.; Rafiq, T.; Frausto-Vicencio, I.; Hopkins, F.M.; Verhulst, K.R.; Rao, P.; Duren, R.M.; Miller, C.E. Vista-LA: Mapping methane-emitting infrastructure in the Los Angeles megacity. Earth Syst. Sci. Data
**2018**, 10, 653. [Google Scholar] [CrossRef] [Green Version] - Chao, H.; Chen, Y. Surface wind profile measurement using multiple small unmanned aerial vehicles. In Proceedings of the IEEE 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 4133–4138. [Google Scholar]
- Fairley, P. Building a Weather-Smart Grid. Sci. Am.
**2018**, 319, 60–65. [Google Scholar] [CrossRef] [PubMed] - Phuangpornpitak, N.; Tia, S. Opportunities and challenges of integrating renewable energy in smart grid system. Energy Procedia
**2013**, 34, 282–290. [Google Scholar] [CrossRef] [Green Version] - Colak, I.; Fulli, G.; Bayhan, S.; Chondrogiannis, S.; Demirbas, S. Critical aspects of wind energy systems in smart grid applications. Renew. Sustain. Energy Rev.
**2015**, 52, 155–171. [Google Scholar] [CrossRef] - Wildmann, N.; Bernard, S.; Bange, J. Measuring the local wind field at an escarpment using small remotely-piloted aircraft. Renew. Energy
**2017**, 103, 613–619. [Google Scholar] [CrossRef] - Varentsov, M.; Artamonov, A.Y.; Pashkin, A.; Repina, I. Experience in the Quadcopter-Based Meteorological Observations in the Atmospheric Boundary Layer; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Moscow, Russia, 2019; p. 012053. [Google Scholar]
- Alsalous, O.; Galaviz, R.; Gulding, J. Evaluation of the efficiency of traffic management initiatives wind delays. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017; p. 4263. [Google Scholar]
- Tang, W.; Chan, P.W.; Haller, G. Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong International Airport. Chaos Interdiscip. J. Nonlinear Sci.
**2010**, 20, 017502. [Google Scholar] [CrossRef] [PubMed] - Tang, W.; Chan, P.W.; Haller, G. Lagrangian coherent structure analysis of terminal winds detected by lidar. Part I: Turbulence structures. J. Appl. Meteorol. Climatol.
**2011**, 50, 325–338. [Google Scholar] [CrossRef] [Green Version] - Knutson, B.; Tang, W.; Chan, P.W. Lagrangian coherent structure analysis of terminal winds: Three-dimensionality, intramodel variations, and flight analyses. Adv. Meteorol.
**2015**, 2015, 816727. [Google Scholar] [CrossRef] [Green Version] - Rabinovich, S.; Curry, R.E.; Elkaim, G.H. Toward dynamic monitoring and suppressing uncertainty in wildfire by multiple unmanned air vehicle system. J. Robot.
**2018**, 2018, 6892153. [Google Scholar] [CrossRef] [Green Version] - Da Silva, L.C.B.; Bernardo, R.M.; de Oliveira, H.A.; Rosa, P.F.F. Unmanned aircraft system coordination for persistent surveillance with different priorities. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 13–16 June 2017; pp. 1153–1158. [Google Scholar]
- AL-Dhief, F.T.; Sabri, N.; Fouad, S.; Latiff, N.A.; Albader, M.A.A. A review of forest fire surveillance technologies: Mobile ad-hoc network routing protocols perspective. J. King Saud Univ.-Comput. Inf. Sci.
**2017**, 31, 135–146. [Google Scholar] [CrossRef] - Xing, Z.; Zhang, Y.; Su, C.; Qu, Y.; Yu, Z. Kalman filter-based wind estimation for forest fire monitoring with a quadrotor UAV. In Proceedings of the 2019 IEEE Conference on Control Technology and Applications (CCTA), Miami, FL, USA, 19–21 August 2019; pp. 783–788. [Google Scholar]
- Duren, R.M.; Thorpe, A.K.; Foster, K.T.; Rafiq, T.; Hopkins, F.M.; Yadav, V.; Bue, B.D.; Thompson, D.R.; Conley, S.; Colombi, N.K.; et al. California’s methane super-emitters. Nature
**2019**, 575, 180–184. [Google Scholar] [CrossRef] [Green Version] - Hopkins, F.M.; Ehleringer, J.R.; Bush, S.E.; Duren, R.M.; Miller, C.E.; Lai, C.T.; Hsu, Y.K.; Carranza, V.; Randerson, J.T. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies. Earth’s Future
**2016**, 4, 408–425. [Google Scholar] [CrossRef] [Green Version] - Smith, B.J.; John, G.; Christensen, L.E.; Chen, Y. Fugitive methane leak detection using sUAS and miniature laser spectrometer payload: System, application and groundtruthing tests. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017; pp. 369–374. [Google Scholar]
- Andersen, T.; Scheeren, B.; Peters, W.; Chen, H. A UAV-based active AirCore system for measurements of greenhouse gases. Atmos. Meas. Tech.
**2018**, 11, 2683–2699. [Google Scholar] [CrossRef] [Green Version] - Juan Jesús, R.; Guillaume, J.; David, S.; Jaime del, C.; Antonio, B. Mini-UAV based sensory system for measuring environmental variables in greenhouses. Sensors
**2015**, 15, 3334–3350. [Google Scholar] - Greene, B.R.; Segales, A.R.; Bell, T.M.; Pillar-Little, E.A.; Chilson, P.B. Environmental and sensor integration influences on temperature measurements by rotary-wing unmanned aircraft systems. Sensors
**2019**, 19, 1470. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Islam, A.; Houston, A.L.; Shankar, A.; Detweiler, C. Design and evaluation of sensor housing for boundary layer profiling using multirotors. Sensors
**2019**, 19, 2481. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Van den Kroonenberg, A.; Martin, T.; Buschmann, M.; Bange, J.; Vörsmann, P. Measuring the wind vector using the autonomous mini aerial vehicle M2AV. J. Atmos. Ocean. Technol.
**2008**, 25, 1969–1982. [Google Scholar] [CrossRef] - Kocer, G.; Mansour, M.; Chokani, N.; Abhari, R.S.; Müller, M. Full-scale wind turbine near-wake measurements using an instrumented uninhabited aerial vehicle. J. Sol. Energy Eng.
**2011**, 133. [Google Scholar] [CrossRef] - Langelaan, J.W.; Alley, N.; Neidhoefer, J. Wind field estimation for small unmanned aerial vehicles. J. Guid. Control. Dyn.
**2011**, 34, 1016–1030. [Google Scholar] [CrossRef] - McClelland, H.G.; Woolsey, C.A. Effects of model simplification on wind reconstruction during open-loop longitudinal flight. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 1599. [Google Scholar]
- Elston, J.; Argrow, B.; Stachura, M.; Weibel, D.; Lawrence, D.; Pope, D. Overview of small fixed-wing unmanned aircraft for meteorological sampling. J. Atmos. Ocean. Technol.
**2015**, 32, 97–115. [Google Scholar] [CrossRef] - Wolf, C.A.; Hardis, R.P.; Woodrum, S.D.; Galan, R.S.; Wichelt, H.S.; Metzger, M.C.; Bezzo, N.; Lewin, G.C.; de Wekker, S.F. Wind data collection techniques on a multi-rotor platform. In Proceedings of the IEEE Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 28 April 2017; pp. 32–37. [Google Scholar]
- De Boisblanc, I.; Dodbele, N.; Kussmann, L.; Mukherji, R.; Chestnut, D.; Phelps, S.; Lewin, G.C.; de Wekker, S. Designing a hexacopter for the collection of atmospheric flow data. In Proceedings of the IEEE Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 25 April 2014; pp. 147–152. [Google Scholar]
- Donnell, G.W.; Feight, J.A.; Lannan, N.; Jacob, J.D. Wind characterization using onboard IMU of sUAS. In Proceedings of the 2018 Atmospheric Flight Mechanics Conference, Atlanta, GA, USA, 25–29 June 2018; p. 2986. [Google Scholar]
- Hollenbeck, D.; Nunez, G.; Christensen, L.E.; Chen, Y. Wind measurement and estimation with small unmanned aerial systems (suas) using on-board mini ultrasonic anemometers. In Proceedings of the IEEE 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 285–292. [Google Scholar]
- Hollenbeck, D.; Oyama, M.; Garcia, A.; Chen, Y. Pitch and roll effects of on-board wind measurements using sUAS. In Proceedings of the 2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 1249–1254. [Google Scholar]
- Prudden, S.; Fisher, A.; Mohamed, A.; Watkins, S. A flying anemometer quadrotor: Part 1. In Proceedings of the International Micro Air Vehicle Conference (IMAV 2016), Beijing, China, 17–21 October 2016; pp. 17–21. [Google Scholar]
- Fuertes, F.C.; Wilhelm, L.; Porté-Agel, F. Multirotor UAV-based platform for the measurement of atmospheric turbulence: Validation and signature detection of tip vortices of wind turbine blades. J. Atmos. Ocean. Technol.
**2019**, 36, 941–955. [Google Scholar] [CrossRef] - Neumann, P.P.; Bartholmai, M. Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit. Sens. Actuators A Phys.
**2015**, 235, 300–310. [Google Scholar] [CrossRef] - Brosy, C.; Krampf, K.; Zeeman, M.; Wolf, B.; Junkermann, W.; Schäfer, K.; Emeis, S.; Kunstmann, H. Simultaneous multicopter-based air sampling and sensing of meteorological variables. Atmos. Meas. Tech.
**2017**, 10, 2773. [Google Scholar] [CrossRef] [Green Version] - Palomaki, R.T.; Rose, N.T.; van den Bossche, M.; Sherman, T.J.; De Wekker, S.F. Wind estimation in the lower atmosphere using multirotor aircraft. J. Atmos. Ocean. Technol.
**2017**, 34, 1183–1191. [Google Scholar] [CrossRef] - Wang, J.Y.; Luo, B.; Zeng, M.; Meng, Q.H. A wind estimation method with an unmanned rotorcraft for environmental monitoring tasks. Sensors
**2018**, 18, 4504. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Allison, S.; Bai, H.; Jayaraman, B. Wind estimation using quadcopter motion: A machine learning approach. Aerosp. Sci. Technol.
**2020**, 98, 105699. [Google Scholar] [CrossRef] [Green Version] - Tomić, T.; Schmid, K.; Lutz, P.; Mathers, A.; Haddadin, S. The flying anemometer: Unified estimation of wind velocity from aerodynamic power and wrenches. In Proceedings of the IEEE 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 1637–1644. [Google Scholar]
- Demitrit, Y.; Verling, S.; Stastny, T.; Melzer, A.; Siegwart, R. Model-based wind estimation for a hovering VTOL tailsitter UAV. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Marina Bay Sands, Singapore, 29 May–3 June 2017; pp. 3945–3952. [Google Scholar]
- Klein, V.; Morelli, E.A. Aircraft System Identification: Theory and Practice; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar]

**Figure 3.**(

**a**) The multirotor UAS employed for validation of model-based wind estimation along with (

**b**) dimensions.

**Figure 4.**(

**a**) The Gill MaxiMet sonic anemometer used to measure wind velocity 10 m AGL. (

**b**) The Remtech PA-0 sensor (SR SoDAR) used to measure wind velocity from 10 to 120 m AGL. (

**c**) The ASC 4000i sensor (LR SoDAR) used to measure wind velocity from 30 to 120 m AGL. (

**d**) The experiment setup used to validate quadrotor wind estimates from 10 to 120 m AGL.

**Figure 5.**Roll and pitch model parameter estimates corresponding to vertical constant ascent rates ${{V}_{z}}_{\mathrm{eq}}=\{0.0,0.5,1.0,1.5,2.0\}$ m/s.

**Figure 6.**Validation of the (

**a**) plunge, (

**b**) yaw, (

**c**) roll, and (

**d**) pitch models identified for quadrotor hovering flight.

**Figure 7.**Comparison of wind observations collected from the quadrotor and independent sensors at (

**a**) 10 m AGL, (

**b**) 60 m AGL, and (

**c**) 110 m AGL from 15:00 to 20:30 EDT on 5 June 2018.

**Figure 8.**Comparison of wind speed and wind direction profiles from SoDAR and the quadrotor ascending vertically from 10 to 120 m AGL at (

**a**) 0.5 m/s, (

**b**) 1 m/s, (

**c**) 1.5 m/s, and (

**d**) 2 m/s.

State Measurement | Sate Variables | Sensor Type and Sampling Rate | |||
---|---|---|---|---|---|

Direct | Indirect | ||||

Position | $\{x,y,z\}$ | GPS | 5 Hz | Barometer | 8 Hz |

Extended Kalman Filter | 8 Hz | ||||

Attitude | $\{\varphi ,\theta ,\psi \}$ | — | — | Gyroscope | 18 Hz |

Accelerometer | 18 Hz | ||||

Extended Kalman Filter | 8 Hz | ||||

Translational | $\{u,v,w\}$ | GPS | 5 Hz | Accelerometer | 18 Hz |

Velocity | Extended Kalman Filter | 8 Hz | |||

Angular Velocity | $\{p,q,r\}$ | Gyroscope | 18 Hz | — | — |

Make/Model | Descriptor | Range | Resolution | Accuracy | ||
---|---|---|---|---|---|---|

Spatial | Temporal | Wind Speed | Wind Direction | |||

ASC 4000i | LR-SoDAR | 30–410 m | 5 m | 30 s | <0.5 m/s above 2 m/s | ${2}^{\circ}$ above 2 m/s |

Remtech PA-0 | SR-SoDAR | 10–200 m | 10 m | 300 s | <0.2 m/s above 6 m/s | ${3}^{\circ}$ above 2 m/s |

Gill MaxiMet GMX541 | SA | N/A | N/A | 1 s | $3\%$ at 12 m/s | ${3}^{\circ}$ at 12 m/s |

**Table 3.**The plunge, yaw, roll and pitch model structures of the quadrotor determined from system identification flight experiments and step-wise regression algorithm presented in [51].

Model | Parameter Structure |
---|---|

Plunge | $\left(\right)open="("\; close=")">\begin{array}{c}\dot{z}\\ \dot{w}\end{array}\left(\right)open="("\; close=")">\begin{array}{c}z\\ w\end{array}$ |

Yaw | $\left(\right)open="("\; close=")">\begin{array}{c}\dot{\psi}\\ \dot{r}\end{array}\left(\right)open="("\; close=")">\begin{array}{c}\psi \\ r\end{array}$ |

Roll | $\left(\right)open="("\; close=")">\begin{array}{c}\dot{y}\\ \dot{\varphi}\\ \dot{v}\\ \dot{p}\end{array}\left(\right)open="("\; close=")">\begin{array}{c}y\\ \varphi \\ v\\ p\end{array}$ |

Pitch | $\left(\right)open="("\; close=")">\begin{array}{c}\dot{x}\\ \dot{\theta}\\ \dot{u}\\ \dot{q}\end{array}\left(\right)open="("\; close=")">\begin{array}{c}x\\ \theta \\ u\\ q\end{array}$ |

Speed | Plunge Model | Yaw Model | ||||||
---|---|---|---|---|---|---|---|---|

Parameter | Value | SE | Units | Parameter | Value | SE | Units | |

0–2 m/s | ${Z}_{w}$ | −0.55 | 0.28 | 1/s | ${N}_{\psi}$ | −1.71 | 0.41 | $1/{\mathrm{s}}^{2}$ |

${Z}_{\delta}$ | −1.71 | 0.79 | 1/kg | ${N}_{r}$ | −0.84 | 0.53 | 1/s | |

– | – | – | – | ${N}_{\delta}$ | 2.41 | 1.18 | 1/($\mathrm{kg}\xb7{\mathrm{m}}^{2}$) |

Pitch Model | 0.0 m/s | 0.5 m/s | 1.0 m/s | 1.5 m/s | 2.0 m/s | Units | |||||
---|---|---|---|---|---|---|---|---|---|---|---|

Parameters | Value | SE | Value | SE | Value | SE | Value | SE | Value | SE | |

${Y}_{\varphi}$ | 3.28 | 0.37 | 2.91 | 0.34 | 4.73 | 0.87 | 4.68 | 0.21 | 6.62 | 0.63 | $\mathrm{m}/{\mathrm{s}}^{2}$ |

${Y}_{v}$ | −0.49 | 0.68 | −0.31 | 0.04 | −0.70 | 2.33 | −0.62 | 0.14 | −1.06 | 0.25 | 1/s |

${L}_{\varphi}$ | −4.54 | 4.17 | −3.95 | 0.12 | −5.87 | 2.55 | −4.07 | 0.26 | −5.92 | 0.10 | $1/{\mathrm{s}}^{2}$ |

${L}_{p}$ | −1.09 | 2.62 | −1.15 | 0.22 | −1.62 | 1.99 | −0.82 | 0.23 | −1.80 | 1.17 | 1/s |

${L}_{\delta}$ | 4.62 | 3.55 | 5.76 | 0.32 | 8.52 | 2.28 | 6.27 | 0.31 | 9.68 | 0.65 | 1/($\mathrm{kg}\xb7{\mathrm{m}}^{2}$) |

Pitch Model | 0.0 m/s | 0.5 m/s | 1.0 m/s | 1.5 m/s | 2.0 m/s | Units | |||||
---|---|---|---|---|---|---|---|---|---|---|---|

Parameters | Value | SE | Value | SE | Value | SE | Value | SE | Value | SE | |

${X}_{\theta}$ | −4.03 | 0.10 | −3.94 | 0.12 | −6.27 | 0.78 | −5.48 | 0.14 | −8.02 | 0.68 | $\mathrm{m}/{\mathrm{s}}^{2}$ |

${X}_{u}$ | −0.71 | 0.56 | −0.61 | 0.08 | −0.80 | 0.19 | −0.67 | 0.08 | −1.24 | 0.28 | 1/s |

${M}_{\theta}$ | −6.23 | 1.67 | −5.20 | 0.11 | −8.63 | 2.64 | −4.44 | 0.23 | −7.78 | 2.69 | $1/{\mathrm{s}}^{2}$ |

${M}_{q}$ | −1.46 | 0.87 | −1.42 | 0.35 | −2.63 | 0.65 | −1.27 | 0.50 | −2.09 | 0.84 | 1/s |

${M}_{\delta}$ | 6.61 | 0.36 | 6.32 | 0.28 | 10.80 | 1.98 | 6.81 | 0.40 | 10.70 | 0.64 | 1/($\mathrm{kg}\xb7{\mathrm{m}}^{2}$) |

Ascent Rate | Plunge Model | Yaw Model | Roll Model | Pitch Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

Par. | RMSE | Units | Par. | RMSE | Units | Par. | RMSE | Units | Par. | RMSE | Units | |

0 m/s | w | 0.44 | m/s | r | 2.59 | rad/s | v | 0.23 | m/s | u | 0.12 | m/s |

p | 0.39 | rad/s | q | 0.19 | rad/s | |||||||

0.5 m/s | w | 0.44 | m/s | r | 2.59 | rad/s | v | 0.31 | m/s | u | 0.59 | m/s |

p | 0.21 | rad/s | q | 0.31 | rad/s | |||||||

1.0 m/s | w | 0.44 | m/s | r | 2.59 | rad/s | v | 0.73 | m/s | u | 0.38 | m/s |

p | 0.90 | rad/s | q | 0.37 | rad/s | |||||||

1.5 m/s | w | 0.44 | m/s | r | 2.59 | rad/s | v | 0.38 | m/s | u | 0.46 | m/s |

p | 0.48 | rad/s | q | 0.51 | rad/s | |||||||

2.0 m/s | w | 0.44 | m/s | r | 2.59 | rad/s | v | 0.48 | m/s | u | 0.37 | m/s |

p | 0.71 | rad/s | q | 0.28 | rad/s |

**Table 8.**Comparison of wind speed and wind direction observations collected from the sonic anemometer and SR-SoDAR at 10 m AGL from 15:30 to 20:30 EDT on 5 June 2018.

Sensor | Height | Wind Speed | Wind Direction | ||||
---|---|---|---|---|---|---|---|

Mean | MDE | RMSE | Mean | MDE | RMSE | ||

SA | 10 m | 2.0 m/s | 0.7 m/s | 1.0 m/s | 284${}^{\circ}$ | 32${}^{\circ}$ | 100${}^{\circ}$ |

SR-SoDAR | 2.7 m/s | 316${}^{\circ}$ |

**Table 9.**Results from the comparison of SoDAR wind speed and wind direction observations collected from 15:00 to 20:30 EDT on 5 June 2018.

Sensor | Height | Wind Speed | Wind Direction | ||||
---|---|---|---|---|---|---|---|

Mean | MDE | RMSE | Mean | MDE | RMSE | ||

SR-SoDAR | 60 m | 4.5 m/s | −0.9 m/s | 1.3 m/s | 321${}^{\circ}$ | −1${}^{\circ}$ | 25${}^{\circ}$ |

LR-SoDAR | 3.6 m/s | 320${}^{\circ}$ | |||||

SR-SoDAR | 110 m | 4.8 m/s | −0.9 m/s | 1.4 m/s | 321${}^{\circ}$ | 0${}^{\circ}$ | 26${}^{\circ}$ |

LR-SoDAR | 3.9 m/s | 321${}^{\circ}$ |

**Table 10.**Comparison of wind speed and wind direction observations from the quadrotor, sonic anemometer, and SR-SoDAR collected at 10 m AGL between 18:05 to 20:17 EDT on 5 June 2018.

Flight Mode | Flight Time | Height | Wind Speed Mean Difference | Wind Direction Mean Difference | ||
---|---|---|---|---|---|---|

SA | SR-SoDAR | SA | SR-SoDAR | |||

Hovering | 18:05–18:15 EDT | 10 m | 0.9 m/s | 0.5 m/s | $-{8}^{\circ}$ | $-{12}^{\circ}$ |

0.9 m/s | 0.1 m/s | ${12}^{\circ}$ | ${1}^{\circ}$ | |||

Hovering | 18:19–18:27 EDT | 10 m | −0.4 m/s | 1.0 m/s | ${25}^{\circ}$ | ${17}^{\circ}$ |

Hovering | 20:08–20:17 EDT | 10 m | −0.1 m/s | – | $-{9}^{\circ}$ | – |

Absolute Mean Difference | 0.6 m/s | 0.5 m/s | ${14}^{\circ}$ | ${10}^{\circ}$ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

González-Rocha, J.; De Wekker, S.F.J.; Ross, S.D.; Woolsey, C.A.
Wind Profiling in the Lower Atmosphere from Wind-Induced Perturbations to Multirotor UAS. *Sensors* **2020**, *20*, 1341.
https://doi.org/10.3390/s20051341

**AMA Style**

González-Rocha J, De Wekker SFJ, Ross SD, Woolsey CA.
Wind Profiling in the Lower Atmosphere from Wind-Induced Perturbations to Multirotor UAS. *Sensors*. 2020; 20(5):1341.
https://doi.org/10.3390/s20051341

**Chicago/Turabian Style**

González-Rocha, Javier, Stephan F. J. De Wekker, Shane D. Ross, and Craig A. Woolsey.
2020. "Wind Profiling in the Lower Atmosphere from Wind-Induced Perturbations to Multirotor UAS" *Sensors* 20, no. 5: 1341.
https://doi.org/10.3390/s20051341