Nanocomposite Based on Poly (para-phenylene)/Chemical Reduced Graphene Oxide as a Platform for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instrumentation
2.2. Synthesis of Chemical Reduced Graphene Oxide (CRGO)
2.3. Nanocomposite Formation CRGO/Fc-ac-PPP
3. Results and Discussions
3.1. Characterization of CRGO/Fc-ac-PPP Nanocomposite
3.2. Electrochemical Characterizations
3.3. Electrochemical Activities of AA, DA and UA on Modified Surfaces
3.4. Analytical Performance of Au/CRGO/Fc-ac-PPP Sensor
3.5. Interferences, Stability and Reproducibility
3.6. Determination of DA in Biological Fluids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, L.; Chen, J.; Yao, H.; Chen, Y.; Zheng, Y.; Lin, X. Simultaneous determination of dopamine, ascorbic acid and uric acid at poly (Evans Blue) modified glassy carbon electrode. Bioelectrochemistry 2008, 73, 11–17. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Hou, H.; You, T. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens. Bioelectron. 2008, 24, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Miao, Y.; Ji, S.; Tjiu, W.W.; Liu, T. Electrospun Carbon Nanofibers Decorated with Ag−Pt Bimetallic Nanoparticles for Selective Detection of Dopamine. ACS Appl. Mater. Interfaces 2014, 6, 12449–12456. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.R.; Kim, T.H.; Hong, S.H.; Kim, H.J. Direct Detection of Tetrahydrobiopterin (BH4) and Dopamine in Rat Brain Using Liquid Chromatography Coupled Electrospray Tandem Mass Spectrometry. Biochem. Biophys. Res. Commun. 2012, 419, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Habibi, B.; Jahanbakhshi, M.; Azar, M.H.P. Simultaneous Determination of Acetaminophen and Dopamine Using SWCNT Modified Carbon-Ceramic Electrode by Differential Pulse Voltammetry. Electrochim. Acta 2011, 56, 2888–2894. [Google Scholar] [CrossRef]
- Xue, C.; Han, Q.; Wang, Y.; Wu, J.; Wen, T.; Wang, R.; Hong, J.; Zhou, X.; Jiang, H. Amperometric Detection of Dopamine in Human Serum by Electrochemical Sensor Based on Gold Nanoparticles Doped Molecularly Imprinted Polymers. Biosens. Bioelectron. 2013, 49, 199–203. [Google Scholar] [CrossRef]
- Zhu, Z.; Qu, L.; Guo, Y.; Zeng, Y.; Sun, W.; Huang, X. Electrochemical Detection of Dopamine on a Ni/Al Layered Double Hydroxide Modified Carbon Ionic Liquid Electrode. Sens. Actuators B 2010, 151, 146–152. [Google Scholar] [CrossRef]
- Kannan, P.; John, S.A. Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Anal. Biochem. 2009, 386, 65–72. [Google Scholar] [CrossRef]
- Tian, X.; Cheng, C.; Yuan, H.; Du, J.; Xiao, D.; Xie, S.; Choi, M.M.F. Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin–graphene-modified electrode by square wave voltammetry. Talanta 2012, 93, 79–85. [Google Scholar] [CrossRef]
- Bilal, S.; Akbar, A.; Shah, A.-H.A. Highly Selective and Reproducible Electrochemical Sensing of Ascorbic Acid Through a Conductive Polymer Coated Electrode. Polymers 2019, 11, 1346. [Google Scholar] [CrossRef]
- Pakapongpan, S.; Mensing, J.P.; Phokharatkul, D.; Lomas, T.; Tuantranont, A. Highly selective electrochemical sensor for ascorbic acid based on a novel hybrid graphene-copper phthalocyanine-polyaniline nanocomposites. Electrochim. Acta 2014, 133, 294–301. [Google Scholar] [CrossRef]
- Ali, M.; Khalid, M.A.U.; Shah, I.; Kim, S.W.; Kim, Y.S.; Lim, J.H.; Choi, K.H. Paper-based selective and quantitative detection of uric acid using citrate-capped Pt nanoparticles (PtNPs) as a colorimetric sensing probe through a simple and remote-based device. New J. Chem. 2019, 43, 7636–7645. [Google Scholar] [CrossRef]
- Fabregat, G.; Armelin, G.; Alemań, C. Selective Detection of Dopamine Combining Multilayers of Conducting Polymers with Gold Nanoparticles. J. Phys. Chem. B 2014, 118, 4669–4682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.C.; Ma, L.X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B 2016, 227, 488–496. [Google Scholar] [CrossRef]
- Prasad, B.B.; Jauhari, D.; Tiwari, M.P. A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. Biosens. Bioelectron. 2013, 50, 19–27. [Google Scholar] [CrossRef]
- Tang, Y.; Pan, K.; Wang, X.; Liu, C.; Luo, S. Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid. Microchim. Acta 2010, 168, 231–237. [Google Scholar] [CrossRef]
- Zheng, X.; Zhou, X.; Ji, X.; Lin, X.; Lin, W. Simultaneous determination of ascorbic acid, dopamine and uric acid using poly(4-aminobutyric acid) modified glassy carbon electrode. Sens. Actuators B 2013, 178, 359–365. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Q.; Lai, C.; Zhang, Y.; Deng, J.; Li, H.; Yao, S. A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. Biosens. Bioelectron. 2013, 48, 75–81. [Google Scholar] [CrossRef]
- Miodek, A.; Le, H.Q.A.; Dorizon, H.S.; Youssoufi, H.K. Streptavidin-polypyrrole Film as Platform for BiotinylatedRedox Probe Immobilization for Electrochemical Immunosensor Application. Electroanalysis 2016, 28, 1–10. [Google Scholar] [CrossRef]
- Sun, C.L.; Lee, H.H.; Yang, J.M.; Wu, C.C. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron. 2011, 26, 3450–3455. [Google Scholar] [CrossRef]
- Su, C.-H.; Sun, C.-L.; Liao, Y.-C. Printed Combinatorial Sensors for Simultaneous Detection of Ascorbic Acid, Uric Acid, Dopamine, and Nitrite. ACS Omega 2017, 2, 4245–4252. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Luo, S.-C. Tuning Surface Charge and Morphology for the Efficient Detection of Dopamine under the Interferences of Uric Acid, Ascorbic Acid, and Protein Adsorption. ACS Appl. Mater. Interfaces 2015, 7, 21931–21938. [Google Scholar] [CrossRef] [PubMed]
- Fei Huang, P.; Wang, L.; Yue Bai, J.; Jing Wang, H.; Qing Zhao, Y.; Di Fan, S. Simultaneous electrochemical detection of dopamine and ascorbic acid at a poly (p-toluene sulfonic acid) modified electrode. Microchim. Acta 2007, 157, 41–47. [Google Scholar] [CrossRef]
- Al-Graiti, W.; Foroughi, J.; Liu, Y.; Chen, J. Hybrid Graphene/Conducting Polymer Strip Sensors for Sensitive and Selective Electrochemical Detection of Serotonin. ACS Omega 2019, 4, 22169. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Liu, Y.; Xin, G.; Wang, M.; Zhang, Z.; Liu, Z. Electrochemical sensor based on a three dimensional nanostructured MoS2 nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid. RSC Adv. 2019, 9, 2997–3003. [Google Scholar] [CrossRef]
- Blili, S.; Zaaboub, Z.; Maaref, H.; Said, A.H. Synthesis of a new p-conjugated redox oligomer: Electrochemical and optical investigation. J. Mol. Struct. 2017, 1128, 111–116. [Google Scholar] [CrossRef]
- Bizid, S.; Blili, S.; Mlika, R.; Said, A.H.; Youssoufi, H.K. Direct Electrochemical DNA Sensor based on a new redox oligomer modified with ferrocene and carboxylic acid: Application to the detection of Mycobacterium Tuberculosis mutant strain. Anal. Chim. Acta 2017, 994, 10–18. [Google Scholar] [CrossRef]
- Kühnel, M.; Overgaard, M.H.; Hels, M.C.; Cui, A.; Vosch, T.; Nygård, T.; Li, T.; Laursen, B.W.; Nørgaard, K. High-Quality Reduced Graphene Oxide Electrodes for Sub-Kelvin Studies of Molecular Monolayer Junctions. J. Phys. Chem. C 2018, 122, 25102–25109. [Google Scholar] [CrossRef]
- Bizid, S.; Blili, S.; Mlika, R.; Saida, A.H.; Youssouf, H.K. Direct E-DNA sensor of Mycobacterium tuberculosis mutant strain based on new nanocomposite transducer (Fc-ac-OMPA/MWCNTs). Talanta 2016, 184, 475–483. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef]
- Randviir, E.P. A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochim. Acta 2018, 286, 179–186. [Google Scholar] [CrossRef]
- Taleb, M.; Ivanov, R.; Berezne, S.; Kazemi, S.H.; Hussainova, I. Ultra-sensitive voltammetric simultaneous determination of dopamine, uric acid and ascorbic acid based on a graphene-coated alumina electrode. Microchim. Acta 2017, 184, 4603–4610. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, N.; Zhang, L.; Wang, H.; Shi, H.; Liu, Q. Simultaneous voltammetric detection of dopamine, ascorbic acid and uric acid using a poly(2-(N -morpholine)ethane sulfonic acid)/RGO modified electrode. RSC Adv. 2018, 8, 5280–5285. [Google Scholar] [CrossRef]
- Begum, K.; Ahmed, M.S.; Jeon, S. New Approach for Porous Chitosan–Graphene Matrix Preparation through Enhanced Amidation for Synergic Detection of Dopamine and Uric Acid. ACS Omega 2017, 2, 3043–3054. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Zheng, Y.; Wang, A.; Cai, W.; Deng, B.; Zhang, Z. An Electrochemical Sensor Based on Reduced Graphene Oxide and ZnO Nanorods-Modified Glassy Carbon Electrode for Uric Acid Detection. Arab. J. Sci. Eng. 2016, 41, 135–141. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, H.; Liu, Q.; Li, L.; Kong, J. Electrodeposition of Three-Dimensional Network Nanostructure PEDOT/PANI for Simultaneous Voltammetric Detection of Ascorbic Acid, Dopamine and Uric Acid. Anal. Chem. 2020, 5, 1288–1293. [Google Scholar] [CrossRef]
- Li, D.; Liu, M.; Zhan, Y.; Su, Q.; Zhang, Y.; Zhang, D. Electrodeposited poly(3,4-ethylenedioxythiophene) doped with graphene oxide for the simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim. Acta 2020, 187, 94–104. [Google Scholar] [CrossRef]
- Krishnan, S.; Tong, L.; Liu, S.; Xing, R. A mesoporous silver-doped TiO2-SnO2 nanocomposite on g-C3N4 nanosheets and decorated with a hierarchical core−shell metal-organic framework for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim. Acta 2020, 187, 82–91. [Google Scholar] [CrossRef]
- Raj, M.; Gupta, P.; Goyal, R.N.; Shim, Y.B. Graphene/conducting polymer nano-composite loaded screen printed carbon sensor for simultaneous determination of dopamine and5-hydroxytryptamine. Sens. Actuators B 2017, 239, 993–1002. [Google Scholar] [CrossRef]
Modified Electrode | Dynamic Range (µM) | LOD (µM) | EP (mV) | Ref | |||||
---|---|---|---|---|---|---|---|---|---|
Analyte | AA | DA | UA | AA | DA | UA | AA-DA | DA-UA | |
PMES/RGO/GCE | 30−100 | 0.05−100 | 0.1−100 | 0.43 | 0.0062 | 0.056 | - | - | [33] |
GCE/GS/CS | - | 1−700 | 1−800 | - | 0.14 | 0.17 | - | - | [34] |
GCE/RGO/ZnO | 50−2350 | 1−70 | 3−330 | 3.77 | 0.33 | 1.08 | 236 | 132 | [35] |
GCE/PEDOT/PANI | 10−4−102 | 30−1000 | 0.7−100 | 24.2 | 4.58 | 2.23 | 216 | 320 | [36] |
GO/PEDOT/GCE | 100−1000 | 6.0−200 | 40−240 | 20 | 2 | 10 | 97 | 129 | [37] |
ITO/g-C3N4/NC@GC/h-ATS | 0.1−200 | 2.5−100 | 2.5−500 | 0.02 | 0.01 | 0.06 | 236 | 204 | [38] |
GONRs/PETDOT/PSS | 250−1500* | 0.5−800 | 0.5−1200 | 250 | 0.5 | 0.5 | 220.5 | 115.1 | [21] |
*0.05−16.55 | 0.05−16.55 | 0.05−1655 | 0.041 | 0.030 | 0.011 | ||||
Au/CRGO/Fc-ac-PPP | 0.1−104 | 10−4−103 | 0.1−104 | 0.046 | 2.8×10−5 | 0.013 | 445.7 | 359.30 | This work |
*0.1−104 | 10−4−103 | 0.1-103 | 0.022 | 1.2×10−5 | 0.012 | This work |
Sample | Analyte | Added (µM) | Found (µM) | Recovery % | RSD % |
---|---|---|---|---|---|
Urine1 | AA | 1000 | 1010 | 101 | 0.4 |
DA | 10 | 11.1 | 111 | 2.1 | |
UA | 1000 | 1020 | 102 | 0.5 | |
Urine2 | AA | 100 | 85 | 85 | 0.9 |
DA | 0.1 | 0.1 | 100 | 1.5 | |
UA | 100 | 100 | 100 | 0.9 | |
Urine3 | AA | 10 | 10.5 | 105 | 0.4 |
DA | 0.01 | 0.0097 | 97 | 3.4 | |
UA | 10 | 10.5 | 105 | 0.2 | |
Urine4 | AA | 0.1 | 0.095 | 95 | 2.4 |
DA | 0.001 | 0.001 | 100 | 2.7 | |
UA | 0.1 | 0.11 | 110 | 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsine, Z.; Bizid, S.; Mlika, R.; Sauriat-Dorizon, H.; Haj Said, A.; Korri-Youssoufi, H. Nanocomposite Based on Poly (para-phenylene)/Chemical Reduced Graphene Oxide as a Platform for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Sensors 2020, 20, 1256. https://doi.org/10.3390/s20051256
Hsine Z, Bizid S, Mlika R, Sauriat-Dorizon H, Haj Said A, Korri-Youssoufi H. Nanocomposite Based on Poly (para-phenylene)/Chemical Reduced Graphene Oxide as a Platform for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Sensors. 2020; 20(5):1256. https://doi.org/10.3390/s20051256
Chicago/Turabian StyleHsine, Zouhour, Salma Bizid, Rym Mlika, Hélène Sauriat-Dorizon, Ayoub Haj Said, and Hafsa Korri-Youssoufi. 2020. "Nanocomposite Based on Poly (para-phenylene)/Chemical Reduced Graphene Oxide as a Platform for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid" Sensors 20, no. 5: 1256. https://doi.org/10.3390/s20051256
APA StyleHsine, Z., Bizid, S., Mlika, R., Sauriat-Dorizon, H., Haj Said, A., & Korri-Youssoufi, H. (2020). Nanocomposite Based on Poly (para-phenylene)/Chemical Reduced Graphene Oxide as a Platform for Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Sensors, 20(5), 1256. https://doi.org/10.3390/s20051256