A Comparison of the Conventional PiG Marker Method Versus a Cluster-Based Model when recording Gait Kinematics in Trans-Tibial Prosthesis Users and the Implications for Future IMU Gait Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Data Processing
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schwartz, M.H.; Rozumalski, A.; Trost, J.P. The effect of walking speed on the gait of typically developing children. J. Biomech. 2008, 41, 1639–1650. [Google Scholar] [CrossRef]
- Yeates, K.H.; Segal, A.D.; Neptune, R.R.; Klute, G.K. Balance and recovery on coronally-uneven and unpredictable terrain. J. Biomech. 2016, 49, 2734–2740. [Google Scholar] [CrossRef] [PubMed]
- Voloshina, A.S.; Kuo, A.D.; Daley, M.A.; Ferris, D.P. Biomechanics and energetics of walking on uneven terrain. J. Exp. Biol. 2013, 216, 3963–3970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappozzo, A.; Catani, F.; Della Croce, U.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- Petropoulos, A.; Sikeridis, D.; Antonakopoulos, T. SPoMo: IMU-based real-time sitting posture monitoring. In Proceedings of the IEEE 7th International Conference on Consumer Electronics—Berlin (ICCE-Berlin), Berlin, Germany, 3–6 September 2017. [Google Scholar]
- Simpson, L.; Maharaj, M.M.; Mobbs, R.J. The role of wearables in spinal posture analysis: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 55. [Google Scholar] [CrossRef]
- Hansson, E.E.; Tornberg, Å. Coherence and reliability of a wearable inertial measurement unit for measuring postural sway. BMC Res. Notes 2019, 12, 201. [Google Scholar]
- Lim, H.; Kim, B.; Park, S. Prediction of Lower Limb Kinetics and Kinematics during Walking by a Single IMU on the Lower Back Using Machine Learning. Sensors 2019, 20, 130. [Google Scholar] [CrossRef] [Green Version]
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef] [Green Version]
- Lipperts, M.; Heyligers, I.C.; van Laarhoven, S.N.; Grimm, B.; Bolink, S.A.A.N. Inertial sensor motion analysis of gait, sit–stand transfers and step-up transfers: differentiating knee patients from healthy controls. Physiol. Meas. 2012, 33, 1947–1958. [Google Scholar]
- Orendurff, M.S.; Segal, A.D.; Klute, G.K.; Berge, J.S.; Rohr, E.S.; Kadel, N.J. The effect of walking speed on center of mass displacement. J. Rehabil. Res. Dev. 2004, 41, 829–834. [Google Scholar] [CrossRef] [Green Version]
- Krätschmer, R.; Böhm, H.; Döderlein, L. Kinematic adaptation and changes in gait classification in running compared to walking in children with unilateral spastic cerebral palsy. Gait Posture 2019, 67, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Kobayashi, T.; Gao, F.; Kataoka, M.; Orendurff, M.S.; Okuda, K. The effect of transverse prosthetic alignment changes on socket reaction moments during gait in individuals with transtibial amputation. Gait Posture 2018, 65, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Greenland, K.; Bloswick, D.; Zhao, J.; Merryweather, A. Vacuum level effects on knee contact force for unilateral transtibial amputees with elevated vacuum suspension. J. Biomech. 2017, 57, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Rigney, S.M.; Simmons, A.; Kark, L. A prosthesis-specific multi-link segment model of lower-limb amputee sprinting. J. Biomech. 2016, 49, 3185–3193. [Google Scholar] [CrossRef] [PubMed]
- Manal, K.; McClay, I.; Stanhope, S.; Richards, J.; Galinat, B. Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: An in vivo study. Gait Posture 2000, 11, 38–45. [Google Scholar] [CrossRef]
- Nair, S.P.; Gibbs, S.; Arnold, G.; Abboud, R.; Wang, W. A method to calculate the centre of the ankle joint: A comparison with the Vicon® Plug-in-Gait model. Clin. Biomech. 2010, 25, 582–587. [Google Scholar] [CrossRef]
- Meng, L.; Childs, C.; Buis, A. A novel Strathclyde cluster model with functional method for joint centre location. In Strathclyde Researcher Conference; University of Strathclyde: Glasgow, UK, 2017. [Google Scholar]
- Mentiplay, B.F.; Clark, R.A. Modified conventional gait model versus cluster tracking: Test-retest reliability, agreement and impact of inverse kinematics with joint constraints on kinematic and kinetic data. Gait Posture 2018, 64, 75–83. [Google Scholar] [CrossRef]
- Meldrum, D.; Shouldice, C.; Conroy, R.; Jones, K.; Forward, M. Test–retest reliability of three dimensional gait analysis: Including a novel approach to visualising agreement of gait cycle waveforms with Bland and Altman plots. Gait Posture 2014, 39, 265–271. [Google Scholar] [CrossRef]
- Kainz, H.; Graham, D.; Edwards, J.; Walsh, H.; Maine, S.; Boyd, R.; Modenese, L.; Carty, C. Reliability of four models for clinical gait analysis. Gait Posture 2017, 54, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.H.; Rozumalski, A. A new method for estimating joint parameters from motion data. J. Biomech. 2005, 38, 107–116. [Google Scholar] [CrossRef]
- Della Croce, U.; Leardini, A.; Chiari, L.; Cappozzo, A. Human movement analysis using stereophotogrammetry: Part 4: Assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 2005, 21, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; D’Amico, C.; Turkina, A.Y.; Fabiana, N.; Amoroso, G.; Risitano, G. Endo and Exoskeleton: New Technologies on Composite Materials. Prosthesis 2020, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cicciù, M. Prosthesis: New Technological Opportunities and Innovative Biomedical Devices. Prosthesis 2019, 1, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Tawy, G.F.; Rowe, P.; Biant, L. Gait variability and motor control in patients with knee osteoarthritis as measured by the uncontrolled manifold technique. Gait Posture 2018, 59, 272–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeni, J.A.; Richards, J.G.; Higginson, J.S. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 2008, 27, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Zuk, M.; Pexowicz, C. Kinematic Analysis of a Six-Degrees-of-Freedom Model Based on ISB Recommendation: A Repeatability Analysis and Comparison with Conventional Gait Model. Appl. Bionics Biomech. 2015, 2015, 503713. [Google Scholar]
- McGinley, J.L.; Baker, R.; Wolfe, R.; Morris, M.E. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture 2009, 29, 360–369. [Google Scholar] [CrossRef]
- Papi, E.; Ugbolue, U.C.; Solomonidis, S.; Rowe, P.J. Comparative study of a newly cluster based method for gait analysis and plug-in gait protocol. Gait Posture 2014, 39, S9–S10. [Google Scholar] [CrossRef]
- Cappozzo, A.; Della Croce, U.; Leardini, A.; Chiari, L. Human movement analysis using stereophotogrammetry. Part 1: Theoretical background. Gait Posture 2005, 21, 186–196. [Google Scholar] [CrossRef]
- Rusaw, D. Motion Analysis and Postural Stability of Transtibial Prosthesis Users. Ph.D. Thesis, University of Gothenburg, Goteborg, Sweden, 2011. [Google Scholar]
- Cappozzo, A.; Catani, F.; Leardini, A.; Benedetti, M.G.; Della Croce, U. Position and orientation in space of bones during movement: Experimental artefacts. Clin. Biomech. 1996, 11, 90–100. [Google Scholar] [CrossRef]
- Leardini, A.; Chiari, L.; Della Croce, U.; Cappozzo, A. Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 2005, 21, 212–225. [Google Scholar] [CrossRef] [PubMed]
Participant | Hip Joint Rotation | |||||
---|---|---|---|---|---|---|
Flex/Extension | Ab/Adduction | Int/External | ||||
PiG | SCM | PiG | SCM | PiG | SCM | |
Subject 1 | 1.6 | 2.4 | 1.1 | 1.0 | 2.0 | 1.5 |
Subject 2 | 1.3 | 1.0 | 0.8 | 1.6 | 1.8 | 1.8 |
Subject 3 | 1.0 | 1.8 | 1.3 | 2.7 | 3.6 | 2.7 |
Subject 4 | 1.9 | 2.6 | 1.3 | 2.6 | 5.6 | 2.2 |
Subject 5 | 2.0 | 1.8 | 1.2 | 2.0 | 1.7 | 2.5 |
Subject 6 | 2.5 | 5.6 | 1.6 | 2.4 | 3.0 | 2.9 |
Subject 7 | 3.1 | 3.0 | 1.2 | 3.1 | 4.4 | 4.6 |
Mean (°) | 1.9 | 2.6 | 1.2 | 2.2 | 3.2 | 2.6 |
Participant | Hip Joint Rotation | |||||
---|---|---|---|---|---|---|
Flex/Extension | Ab/Adduction | Int/External | ||||
PiG | SCM | PiG | SCM | PiG | SCM | |
Subject 1 | 1.0 | 1.9 | 0.4 | 0.6 | 1.6 | 1.6 |
Subject 2 | 1.3 | 1.3 | 0.6 | 1.1 | 1.3 | 1.8 |
Subject 3 | 3.1 | 4.3 | 0.7 | 2.8 | 2.5 | 1.3 |
Subject 4 | 2.0 | 4.1 | 1.1 | 2.7 | 2.9 | 3.9 |
Subject 5 | 3.3 | 3.4 | 1.1 | 1.8 | 2.7 | 2.7 |
Subject 6 | 2.5 | 3.9 | 0.8 | 1.8 | 2.7 | 4.3 |
Subject 7 | 2.2 | 2.5 | 1.0 | 1.8 | 4.7 | 1.5 |
Mean (°) | 2.2 | 3.0 | 0.8 | 1.8 | 2.6 | 2.4 |
Participant | Knee Joint Rotation | |||||
---|---|---|---|---|---|---|
Flex/Extension | Ab/Adduction | Int/External | ||||
PiG | SCM | PiG | SCM | PiG | SCM | |
Subject 1 | 2.0 | 4.5 | 1.8 | 2.7 | 1.0 | 2.2 |
Subject 2 | 2.1 | 1.6 | 1.1 | 1.4 | 0.7 | 1.6 |
Subject 3 | 1.1 | 1.8 | 1.6 | 1.4 | 0.3 | 2.3 |
Subject 4 | 2.2 | 3.9 | 3.2 | 2.4 | 1.4 | 2.2 |
Subject 5 | 2.4 | 3.4 | 2.0 | 1.4 | 2.9 | 2.0 |
Subject 6 | 4.9 | 6.5 | 3.4 | 1.7 | 0.7 | 2.6 |
Subject 7 | 5.3 | 3.9 | 3.2 | 2.9 | 9.8 | 4.4 |
Mean (°) | 2.9 | 3.7 | 2.3 | 2.0 | 2.4 | 2.5 |
Participant | Knee Joint Rotation | |||||
---|---|---|---|---|---|---|
Flex/Extension | Ab/Adduction | Int/External | ||||
PiG | SCM | PiG | SCM | PiG | SCM | |
Subject 1 | 0.8 | 2.8 | 0.5 | 0.8 | 1.0 | 1.8 |
Subject 2 | 1.3 | 2.1 | 1.5 | 0.8 | 1.6 | 1.5 |
Subject 3 | 4.1 | 6.1 | 2.5 | 1.9 | 2.4 | 3.9 |
Subject 4 | 2.3 | 3.0 | 1.4 | 2.6 | 2.0 | 2.5 |
Subject 5 | 3.2 | 7.3 | 1.9 | 1.9 | 2.8 | 2.3 |
Subject 6 | 2.0 | 2.3 | 1.7 | 1.3 | 3.9 | 1.8 |
Subject 7 | 2.4 | 4.7 | 3.3 | 2.0 | 2.8 | 2.3 |
Mean (°) | 2.3 | 4.1 | 1.8 | 1.6 | 2.4 | 2.3 |
Participant | Ankle Joint Rotation SD | |||||
---|---|---|---|---|---|---|
Dorsi/Plantar | Ab/Adduction | Inv/Eversion | ||||
PiG | SCM | PiG | SCM | PiG | SCM | |
Subject 1 | 1.1 | 0.9 | 1.2 | 2.9 | 5.5 | 1.4 |
Subject 2 | 0.3 | 0.5 | 0.2 | 0.8 | 1.5 | 0.7 |
Subject 3 | 0.5 | 0.5 | 0.9 | 0.8 | 3.6 | 0.8 |
Subject 4 | 1.0 | 0.8 | 3.7 | 1.1 | 2.2 | 0.8 |
Subject 5 | 6.4 | 0.6 | 6.9 | 0.7 | 1.7 | 0.6 |
Subject 6 | 1.1 | 1.5 | 0.4 | 1.0 | 2.4 | 1.3 |
Subject 7 | 11.1 | 1.6 | 3.3 | 1.2 | 15.7 | 1.4 |
Mean (°) | 3.1 | 0.9 | 2.3 | 1.2 | 4.6 | 1.0 |
Participant | Ankle Joint Rotation SD | |||||
---|---|---|---|---|---|---|
Dorsi/Plantar | Ab/Adduction | Inv/Eversion | ||||
PiG | SCM | PiG | SCM | PiG | SCM | |
Subject 1 | 1.7 | 2.4 | 0.9 | 1.9 | 1.3 | 1.1 |
Subject 2 | 6.4 | 1.5 | 3.6 | 1.7 | 1.5 | 1.0 |
Subject 3 | 8.2 | 2.8 | 8.0 | 5.6 | 1.1 | 1.4 |
Subject 4 | 1.8 | 2.0 | 0.8 | 2.5 | 3.4 | 1.4 |
Subject 5 | 4.1 | 6.0 | 1.5 | 4.1 | 4.5 | 2.5 |
Subject 6 | 1.8 | 14.2 | 1.8 | 12.2 | 4.2 | 1.5 |
Subject 7 | 1.8 | 1.7 | 1.1 | 2.5 | 5.0 | 1.3 |
Mean (°) | 3.7 | 4.4 | 2.5 | 4.4 | 3.0 | 1.5 |
Parameters | PiG SD | SCM SD | p-Value | p < 0.05 | p < 0.005 |
---|---|---|---|---|---|
Sound side | |||||
Hip flex/extension ROM | 38.4(4.7) | 42.1(7.0) | 0.12 | ||
Peak Stance Extension | 15.3(10.5) | −8.9(10.0) | 0.06 | * | |
Peak Swing Flexion | 17.9(12.4) | 27.2(13.5) | 0.02 | ||
Hip Ab/Ad ROM | 9.1(3.2) | 12.3(3.3) | 0.11 | * | |
Hip Int/Ext Rotation ROM | 24.6(5.3) | 12.1(4.0) | 0.01 | ||
Amputated side | |||||
Hip flex/extension ROM | 42.1(7.6) | 49.0(5.6) | 0.00 | * | ** |
Peak Stance Extension | −11.4(9.6) | −7.6(9.2) | 0.22 | ||
Peak Swing Flexion | 27.5(8.8) | 38.5(9.7) | 0.01 | * | |
Hip Ab/Ad ROM | 8.9(3.8) | 11.6(3.3) | 0.32 | ||
Hip Int/Ext Rotation ROM | 37.6(32.3) | 12.3(3.0) | 0.09 |
Parameters | PiG SD | SCM SD | p-Value | p < 0.05 | p < 0.005 |
---|---|---|---|---|---|
Sound side | |||||
Knee flex/extension ROM | 48.8(10.0) | 63.4(7.7) | 0.01 | * | |
Peak Stance Extension | 3.2(11.4) | 8.6(8.4) | 0.18 | ||
Peak Swing Flexion | 43.6(14.3) | 60.8(7.5) | 0.02 | * | |
Knee Ab/Ad ROM | 34.1(12.6) | 21.3(9.4) | 0.08 | ||
Knee Int/Ext Rotation ROM | 20.7(8.1) | 19.5(5.2) | 0.71 | ||
Amputated side | |||||
Knee flex/extension ROM | 45.3(12.8) | 70.6(8.9) | 0.01 | * | |
Peak Stance Extension | 6.8(7.2) | 12.2(4.4) | 0.03 | * | |
Peak Swing Flexion | 41.9(14.6) | 69.3(5.4) | 0.01 | * | |
Knee Ab/Ad ROM | 38.7(15.1) | 22.5(10.0) | 0.10 | ||
Knee Int/Ext Rotation ROM | 9.8(6.9) | 21.2(5.6) | 0.01 | * |
Parameters | PiG SD | SCM SD | p-Value | p < 0.05 | p < 0.005 |
---|---|---|---|---|---|
Sound side | |||||
Ankle Plantar/dorsiflexion | 37.3(16.1) | 25.7(3.5) | 0.12 | ||
Peak Stance dorsiflexion | 32.8(21.8) | 2.8(6.6) | 0.02 | * | |
Peak Swing plantarflexion | −2.3(8.5) | −21.1(6.6) | 0.01 | * | |
Ankle Ab/Adduction | 13.5(13.7) | 11.6(3.9) | 0.76 | ||
Ankle Inv/Eversion ROM | 11.5(5.0) | 10.6(3.6) | 0.66 | ||
Amputated side | |||||
Ankle Plantar/dorsiflexion | 10.5(6.0) | 8.2(2.8) | 0.43 | ||
Peak Stance dorsiflexion | 15.2(11.8) | −3.0(2.6) | 0.01 | * | |
Peak Swing plantarflexion | 9.0(13.3) | −8.2(4.0) | 0.02 | * | |
Ankle Ab/Adduction | 14.4(11.5) | 3.2(0.8) | 0.04 | * | |
Ankle Inv/Eversion ROM | 34.7(30.5) | 4.0(1.3) | 0.04 | * |
Amputated Side | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Hip Joint | Knee Joint | Ankle Joint | Mean (°) | |||||||
Protocol | Flex/Ext | Ab/Ad | In/Ex | Flex/Ext | Ab/Ad | In/Ex | Dorsi/Plntar | Ab/Ad | Inv/Evr | |
PiG | 9.6 | 3.8 | 38.3 | 10.0 | 11.1 | 12.7 | 14.0 | 18.3 | 40.7 | 17.6 |
SCM | 10.6 | 4.6 | 22.4 | 8.2 | 9.3 | 15.5 | 3.5 | 5.2 | 4.4 | 9.3 |
Sound Side | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Hip Joint | Knee Joint | Ankle Joint | Mean (°) | |||||||
Protocol | Flex/Ext | Ab/Ad | In/Ex | Flex/Ext | Ab/Ad | In/Ex | Dorsi/Plntar | Ab/Ad | Inv/Evr | |
PiG | 11.4 | 5.7 | 19.0 | 10.5 | 8.1 | 22.6 | 17.6 | 22.0 | 21.4 | 15.4 |
SCM | 11.8 | 3.8 | 19.3 | 7.4 | 10.3 | 14.7 | 6.7 | 6.6 | 6.5 | 9.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samala, M.; Rowe, P.; Rattanakoch, J.; Guerra, G. A Comparison of the Conventional PiG Marker Method Versus a Cluster-Based Model when recording Gait Kinematics in Trans-Tibial Prosthesis Users and the Implications for Future IMU Gait Analysis. Sensors 2020, 20, 1255. https://doi.org/10.3390/s20051255
Samala M, Rowe P, Rattanakoch J, Guerra G. A Comparison of the Conventional PiG Marker Method Versus a Cluster-Based Model when recording Gait Kinematics in Trans-Tibial Prosthesis Users and the Implications for Future IMU Gait Analysis. Sensors. 2020; 20(5):1255. https://doi.org/10.3390/s20051255
Chicago/Turabian StyleSamala, Manunchaya, Philip Rowe, Jutima Rattanakoch, and Gary Guerra. 2020. "A Comparison of the Conventional PiG Marker Method Versus a Cluster-Based Model when recording Gait Kinematics in Trans-Tibial Prosthesis Users and the Implications for Future IMU Gait Analysis" Sensors 20, no. 5: 1255. https://doi.org/10.3390/s20051255
APA StyleSamala, M., Rowe, P., Rattanakoch, J., & Guerra, G. (2020). A Comparison of the Conventional PiG Marker Method Versus a Cluster-Based Model when recording Gait Kinematics in Trans-Tibial Prosthesis Users and the Implications for Future IMU Gait Analysis. Sensors, 20(5), 1255. https://doi.org/10.3390/s20051255