The Use of Artificial Neural Networks for Forecasting of Air Temperature inside a Heated Foil Tunnel
Abstract
:1. Introduction
2. Materials and Methods
- Formulating a semantic model.
- Gathering experimental data.
- Selecting neural network’s type and architecture.
- Carrying out the process of networks’ learning.
- Choosing and assessing the best model.
2.1. Formulating a Semantic Model
- Tin(t0 + tHP)—forecasted internal temperature for moment t0+HP, [°C]
- t0—moment (hour), in which prediction was executed, [h]
- tHP—time horizon of prediction; tHP = 1, 2, 3, 4, [h]
- D(t0)—next day of year, in which prediction was executed
- Tex(t0−i)—external temperature in moment (t0−i), [°C]
- Th(t0−i)—temperature of heater in moment (t0−i), [°C]
- S(t0−i)—sunny radiation intensity in moment (t0−i), [W⋅m−2]
- W(t0−i)—wind speed in moment (t0-i), [m⋅s−1]
- Tin(t0−i)—internal temperature in moment (t0−i), [°C]
- i—slip index in time; i = 0, 1, 2, 3, 4, 20, 21, 22, 23, [h].
2.2. Gathering Experimental Data
2.3. Selecting Neural Network’s Type and Architecture
2.4. Carrying out the Process of Networks’ Learning
2.5. Choosing and Assessing the Best Model
- Tme,i—measured value of internal temperature, [°C]
- Tcal,i—calculated by ANN value of internal temperature, [°C]
- n—number of observations.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D.D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, A.; Kamel, E.; Enrico, F.; Atif, I.; Abdelkader, M. An intelligent system for the climate control and energy savings in agricultural greenhouses. Energy Effic. 2016, 9, 1241–1255. [Google Scholar] [CrossRef]
- Moon, T.; Hong, S.; Choi, H.Y.; Jung, D.H.; Chang, S.H.; Son, J.E. Interpolation of greenhouse environment data using multilayer perceptron. Comput. Electron. Agric. 2019, 166, 105023. [Google Scholar] [CrossRef]
- Mostafavi, S.A.; Rezaei, A. Energy consumption in greenhouses and selection of an optimized heating system with minimum energy consumption. Heat Transf. Asian Res. 2019, 48, 3257–3277. [Google Scholar] [CrossRef]
- Vlontzos, G.; Pardalos, P.M. Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks. Renew. Sustain. Energy Rev. 2017, 76, 155–162. [Google Scholar] [CrossRef]
- Iddio, E.; Wang, L.; Thomas, Y.; McMorrow, G.; Denzer, A. Energy efficient operation and modeling for greenhouses: A literature review. Renew. Sustain. Energy Rev. 2020, 117, 109480. [Google Scholar] [CrossRef]
- Choab, N.; Allouhi, A.; El Maakoul, A.; Kousksou, T.; Saadeddine, S.; Jamil, A. Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies. Solar Energy 2019, 191, 109–137. [Google Scholar] [CrossRef]
- Borrelli, P.; Panagos, P.; Ballabio, C.; Lugato, E.; Weynants, M.; Montanarella, L. Towards a pan-European assessment of land susceptibility to wind erosion. Land Degrad. Dev. 2016, 27, 1093–1105. [Google Scholar] [CrossRef]
- Castañeda-Miranda, A.; Alemán-Ayala, K.; Castaño-Meneses, V.M. The Development of a new virtual croplands erosion measurement system using three-dimensional laser scanner and empirical Kostiakov-Lewis models. Opt. Laser Technol. 2019, 117, 316–332. [Google Scholar] [CrossRef]
- Colazo, J.C.; Buschiazzo, D. The Impact of Agriculture on Soil Texture Due to Wind Erosion. Land Degrad. Dev. 2015, 26, 62–70. [Google Scholar] [CrossRef]
- Galdino, S.; Sano, E.E.; Andrade, R.G.; Grego, C.R.; Nogueira, S.F.; Bragantini, C.; Flosi, A.H.G. Large-scale Modeling of Soil Erosion with RUSLE for Conservationist Planning of Degraded Cultivated Brazilian Pastures. Land Degrad. Dev. 2016, 27, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil water erosion on Mediterranean vineyards: A review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Castañeda-Miranda, A.; Icaza-Herrera, M.D.; Castaño-Meneses, V.M. Meteorological temperature and humidity prediction from fourier-statistical analysis of hourly data. Adv. Meteorol. 2019, 2019. [Google Scholar] [CrossRef]
- Kaplani, E.; Kaplanis, S.; Mondal, S. A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude. Renew. Energy 2018, 126, 933–942. [Google Scholar] [CrossRef] [Green Version]
- Krzyszczak, J.; Baranowski, P.; Zubik, M.; Hoffmann, H. Temporal scale influence on multifractal properties of agro-meteorological time series. Agric. For. Meteorol. 2017, 239, 223–235. [Google Scholar] [CrossRef]
- Yang, Z.-C. Hourly ambient air humidity fluctuation evaluation and forecasting based on the least-squares Fourier-model. Meas. J. Int. Meas. Confed. 2019, 133, 112–123. [Google Scholar] [CrossRef]
- Gravalos, I.; Tsiropoulos, Z.; Xyradakis, P.; Moshou, D.; Kateris, D.L. A low-cost greenhouse monitoring system based on internet connectivity. Acta Hortic. 2012, 952, 937–944. [Google Scholar] [CrossRef]
- Patil, S.L.; Tantau, H.J.; Salokhe, V.M. Modelling of tropical greenhouse temperature by auto regressive and neural network models. Biosyst. Eng. 2008, 99, 423–431. [Google Scholar] [CrossRef]
- Kolokotsa, D.; Saridakis, G.; Dalamagkidis, K.; Dolianitis, S.; Kaliakatsos, I. Development of an intelligent indoor environment and energy management system for greenhouses. Energy Convers. Manag. 2010, 51, 155–168. [Google Scholar] [CrossRef]
- Wang, H.; Li, L.; Wu, Y.; Meng, F.; Wang, H.; Sigrimis, N.A. Recurrent Neural Network Model for Prediction of Microclimate in Solar Greenhouse. IFAC Pap. 2018, 51, 790–795. [Google Scholar]
- Zheng, M.; Leib, B.; Wright, W.; Ayers, P. Neural models to predict temperature and natural ventilation in a high tunnel. Trans. ASABE 2019, 62, 761–769. [Google Scholar] [CrossRef]
- Rasheed, A.; Lee, J.W.; Lee, H.W. Development and optimization of a building energy simulation model to study the effect of greenhouse design parameters. Energies 2018, 11, 2001. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Rosas, A.; Molina-Aiz, F.D.; Valera, D.L.; López, A.; Khamkure, S. Development of a single energy balance model for prediction of temperatures inside a naturally ventilated greenhouse with polypropylene soil mulch. Comput. Electron. Agric. 2017, 142, 9–28. [Google Scholar] [CrossRef]
- Wang, H.; Sanchez-Molina, J.A.; Li, M.; Díaz, F.R. Improving the performance of vegetable leaf wetness duration models in greenhouses using decision tree learning. Water 2019, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Soundiran, R.; Radhakrishnan, T.K.; Natarajan, S. Modeling of greenhouse agro-ecosystem using optimally designed bootstrapping artificial neural network. Neural Comput. Appl. 2019, 31, 7821–7836. [Google Scholar] [CrossRef]
- Shen, Y.; Wei, R.; Xu, L. Energy consumption prediction of a greenhouse and optimization of daily average temperature. Energies 2018, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Chen, Y.; Hassan, S.G.; Li, D. Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO. Comput. Electron. Agric. 2016, 122, 94–102. [Google Scholar] [CrossRef]
- Soares, E.; Costa, P.; Costa, B.; Leite, D. Ensemble of evolving data clouds and fuzzy models for weather time series prediction. Appl. Soft Comput. J. 2018, 64, 445–453. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y. An innovative hybrid approach for multi-step ahead wind speed prediction. Appl. Soft Comput. J. 2019, 78, 296–309. [Google Scholar] [CrossRef]
- Colston, J.M.; Ahmed, T.; Mahopo, C.; Kang, G.; Kosek, M.; de Sousa Junior, F.; Shrestha, P.S.; Svensen, E.; Turab, A.; Zaitchik, B.; et al. Evaluating meteorological data from weather stations, and from satellites and global models for a multi-site epidemiological study. Environ. Res. 2018, 165, 91–109. [Google Scholar] [CrossRef]
- Li, N.; Wang, K.; Cheng, J. A research on a following day load simulation method based on weather forecast parameters. Energy Convers. Manag. 2015, 103, 691–704. [Google Scholar] [CrossRef]
- Xing, L.; Li, L.; Gong, J.; Ren, C.; Liu, J.; Chen, H. Daily soil temperatures predictions for various climates in United States using data-driven model. Energy 2018, 160, 430–440. [Google Scholar] [CrossRef]
- He, F.; Ma, C. Modeling greenhouse air humidity by means of artificial neural network and principal component analysis. Comput. Electron. Agric. 2010, 71, S19–S23. [Google Scholar] [CrossRef]
- Runge, J.; Zmeureanu, R. Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review. Energies 2019, 12, 3254. [Google Scholar] [CrossRef] [Green Version]
- Tamouridou, A.A.; Pantazi, E.X.; Alexandridis, T.; Lagopodi, A.; Kontouris, G.; Moshou, D. Spectral Identification of Disease in Weeds Using Multilayer Perceptron with Automatic Relevance Determination. Sensors 2018, 18, 2770. [Google Scholar] [CrossRef] [Green Version]
- Kasantikul, K.; Yang, D.; Wang, Q.; Lwin, A. A Novel Wind Speed Estimation Based on the Integration of an Artificial Neural Network and a Particle Filter Using BeiDou GEO Reflectometry. Sensors 2018, 18, 3350. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, G.S.; de Aguiar Vallim Filho, A.R.; da Silva, L.S.; da Silva, L.A. Prediction of Motor Failure Time Using an Artificial Neural Network. Sensors 2019, 19, 4342. [Google Scholar]
- Liu, Y.; Zhang, S.; Chen, X.; Wang, J. Artificial Combined Model Based on Hybrid Nonlinear Neural Network Models and Statistics Linear Models—Research and Application for Wind Speed Forecasting. Sustainability 2018, 10, 4601. [Google Scholar] [CrossRef] [Green Version]
- Niedbała, G.; Nowakowski, K.; Rudowicz-Nawrocka, J.; Magdalena, P.; Tomczak, R.J.; Tyksiński, T.; Pinto, A.A. Multicriteria Prediction and Simulation of Winter Wheat Yield Using Extended Qualitative and Quantitative Data Based on Artificial Neural Networks. Appl. Sci. 2019, 9, 2773. [Google Scholar] [CrossRef] [Green Version]
- Wrobel, M.; Fraczek, J.; Francik, S.; Slipek, Z.; Mudryk, K. Modelling of unit contact surface of bean seeds using Artificial Neural Networks. In Proceedings of the 12th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013; pp. 287–291. [Google Scholar]
- Mudryk, K.; Francik, S.; Fraczek, J.; Slipek, Z.; Wrobel, M. Model of actual contact area of rye and wheat grains with flat surface. In Proceedings of the 12th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 23–24 May 2013; pp. 292–296. [Google Scholar]
- Francik, S.; Łapczyńska-Kordon, B.; Francik, R.; Wójcik, A. Modeling and Simulation of Biomass Drying Using Artificial Neural Networks. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 571–581. ISBN 9783319723716. [Google Scholar]
- Francik, S.; Ślipek, Z.; Frączek, J.; Knapczyk, A. Present Trends in Research on Application of Artificial Neural Networks in Agricultural Engineering. Agric. Eng. 2016, 20, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Niedbała, G. Application of Artificial Neural Networks for Multi-Criteria Yield Prediction of Winter Rapeseed. Sustainability 2019, 11, 533. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Miranda, A.; Castaño, V.M. Smart frost control in greenhouses by neural networks models. Comput. Electron. Agric. 2017, 137, 102–114. [Google Scholar] [CrossRef]
- Almonti, D.; Baiocco, G.; Tagliaferri, V.; Ucciardello, N. Artificial Neural Network in Fibres Length Prediction for High Precision Control of Cellulose Refining. Materials 2019, 12, 3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamouridou, A.A.; Alexandridis, T.K.; Pantazi, X.E.; Lagopodi, A.L.; Kashefi, J.; Kasampalis, D.; Kontouris, G.; Moshou, D. Application of Multilayer Perceptron with Automatic Relevance Determination on Weed Mapping Using. Sensors 2017, 17, 2307. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, J.F.; Fernandez, J.F.G.; Polo, F.O.; Marquez, A.C. A Review of the Use of Artificial Neural Network Models for Energy and Reliability Prediction. A Study of the Solar PV, Hydraulic and Wind Energy Sources. Appl. Sci. 2019, 9, 1844. [Google Scholar] [CrossRef] [Green Version]
- Tina, G.M. Special Issue on Applications of Artificial Neural Networks for Energy Systems. Appl. Sci. 2019, 9, 3734. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Xu, X.; Huo, X.; Li, Y. Forecasting Models for Wind Power Using Extreme-Point Symmetric Mode Decomposition and Artificial Neural Networks. Sustainability 2019, 11, 650. [Google Scholar] [CrossRef] [Green Version]
- Byliński, H.; Sobecki, A.; Gębicki, J. The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process. Sustainability 2019, 11, 4407. [Google Scholar] [CrossRef] [Green Version]
- Twardowski, P.; Wiciak-Pikuła, M. Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel. Materials 2019, 12, 3091. [Google Scholar] [CrossRef] [Green Version]
- Lechowicz, Z.; Fukue, M.; Rabarijoely, S.; Sulewska, M.J. Evaluation of the Undrained Shear Strength of Organic Soils from a Dilatometer Test Using Artificial Neural Networks. Appl. Sci. 2018, 8, 1395. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Martinez, V.; Baladron, C.; Gomez-Gil, J.; Ruiz-Ruiz, G.; Navas-Garcia, L.M.; Aguiar, J.M.; Carro, B. Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks. Sensors 2012, 12, 14004–14021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, E.; Gomes, Á.; Gaspar, A.R.; Henggeler Antunes, C. Estimation of renewable energy and built environment-related variables using neural networks—A review. Renew. Sustain. Energy Rev. 2018, 94, 959–988. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.; Ahmad, M.W.; Rezgui, Y.; Hippolyte, J.L. Operational supply and demand optimisation of a multi-vector district energy system using artificial neural networks and a genetic algorithm. Appl. Energy 2019, 235, 699–713. [Google Scholar] [CrossRef]
- Seginer, I.; Boulard, T.; Bailey, B.J. Neural Network Models of the Greenhouse Climate. J. Agric. Eng. Res. 1994, 59, 203–216. [Google Scholar] [CrossRef]
- Kok, R.; Lacroix, R.; Clark, G.; Taillefer, E. Imitation of a procedural greenhouse model with an artificial neural network. Can. Agric. Eng. 1994, 36, 117–126. [Google Scholar]
- Ferreira, P.M.; Faria, E.A.; Ruano, A.E. Neural network models in greenhouse air temperature prediction. Neurocomputing 2002, 43, 51–75. [Google Scholar] [CrossRef] [Green Version]
- Linker, R.; Seginer, I. Greenhouse temperature modeling: A comparison between sigmoid neural networks and hybrid models. Math. Comput. Simul. 2004, 65, 19–29. [Google Scholar] [CrossRef]
- Uchida Frausto, H.; Pieters, J.G. Modelling greenhouse temperature using system identification by means of neural networks. Neurocomputing 2004, 56, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Dariouchy, A.; Aassif, E.; Lekouch, K.; Bouirden, L.; Maze, G. Prediction of the intern parameters tomato greenhouse in a semi-arid area using a time-series model of artificial neural networks. Meas. J. Int. Meas. Confed. 2009, 42, 456–463. [Google Scholar] [CrossRef]
- Trejo-Perea, M.; Herrera-Ruiz, G.; Rios-Moreno, J.; Miranda, R.C.; Rivas-Araiza, E. Greenhouse energy consumption prediction using neural networks models. Int. J. Agric. Biol. 2009, 11, 1–6. [Google Scholar]
- Outanoute, M.; Lachhab, A.; Selmani, A.; Oubehar, H.; Guerbaoui, M. Neural network based models for estimating the temperature and humidity under greenhouse. Int. J. Multi Discip. Sci. 2016, 3, 26–33. [Google Scholar]
- Bejan, A. Convection Heat Transfer, 4th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2013; ISBN 9780470900376. [Google Scholar]
- Ahamed, M.S.; Guo, H.; Tanino, K. Energy-efficient design of greenhouse for Canadian Prairies using a heating simulation model. Int. J. Energy Res. 2018, 42, 2263–2272. [Google Scholar] [CrossRef]
ANN Model | Type of Network | Number of Inputs | Number of Neutrons in Hidden Layers |
---|---|---|---|
ann01 | MLP 32-8-1 | 32 | 8 |
ann02 | MLP 40-10-1 | 40 | 10 |
ann03 | MLP 15-8-1 | 15 | 8 |
ann04 | MLP 31-10-1 | 31 | 10 |
ann05 | MLP 26-7-1 | 26 | 7 |
ann06 | MLP 18-9-1 | 18 | 9 |
ann07 | MLP 16-8-1 | 16 | 8 |
ann08 | MLP 13-6-1 | 13 | 6 |
ann09 | MLP 8-8-1 | 8 | 8 |
ann10 | MLP 22-6-1 | 22 | 6 |
Data Set | ANN Model | tHP = 1h | tHP = 2h | tHP = 3h | tHP = 4h |
---|---|---|---|---|---|
Learning | ann01 | 2.10 | 2.54 | 2.93 | 3.41 |
ann02 | 2.01 | 2.54 | 2.81 | 3.38 | |
ann03 | 2.63 | 2.95 | 3.38 | 4.01 | |
ann04 | 2.15 | 2.48 | 2.74 | 3.23 | |
ann05 | 2.37 | 2.79 | 3.22 | 4.01 | |
ann06 | 2.75 | 3.01 | 3.36 | 4.10 | |
ann07 | 2.19 | 2.68 | 3.00 | 3.59 | |
ann08 | 2.34 | 2.91 | 3.34 | 3.80 | |
ann09 | 2.21 | 2.93 | 3.40 | 4.16 | |
ann10 | 2.16 | 2.67 | 3.02 | 3.39 | |
Validation | ann01 | 2.36 | 2.87 | 3.17 | 3.63 |
ann02 | 2.28 | 2.97 | 3.30 | 3.49 | |
ann03 | 2.47 | 2.83 | 3.13 | 3.60 | |
ann04 | 2.37 | 2.78 | 3.17 | 3.66 | |
ann05 | 2.40 | 2.78 | 3.10 | 3.63 | |
ann06 | 2.50 | 2.83 | 3.08 | 3.53 | |
ann07 | 2.49 | 2.90 | 3.12 | 3.39 | |
ann08 | 2.45 | 2.74 | 3.15 | 3.50 | |
ann09 | 2.19 | 2.81 | 3.13 | 3.51 | |
ann10 | 2.36 | 2.68 | 3.08 | 3.50 | |
Testing | ann01 | 2.57 | 3.41 | 4.12 | 4.65 |
ann02 | 2.53 | 3.39 | 4.07 | 4.59 | |
ann03 | 2.80 | 3.38 | 3.94 | 4.48 | |
ann04 | 2.53 | 3.35 | 4.22 | 5.01 | |
ann05 | 2.61 | 3.34 | 4.10 | 4.82 | |
ann06 | 2.96 | 3.61 | 4.28 | 4.96 | |
ann07 | 2.83 | 3.42 | 4.09 | 4.70 | |
ann08 | 2.90 | 3.37 | 4.15 | 4.95 | |
ann09 | 2.52 | 3.40 | 4.11 | 4.81 | |
ann10 | 2.81 | 3.29 | 4.07 | 4.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francik, S.; Kurpaska, S. The Use of Artificial Neural Networks for Forecasting of Air Temperature inside a Heated Foil Tunnel. Sensors 2020, 20, 652. https://doi.org/10.3390/s20030652
Francik S, Kurpaska S. The Use of Artificial Neural Networks for Forecasting of Air Temperature inside a Heated Foil Tunnel. Sensors. 2020; 20(3):652. https://doi.org/10.3390/s20030652
Chicago/Turabian StyleFrancik, Sławomir, and Sławomir Kurpaska. 2020. "The Use of Artificial Neural Networks for Forecasting of Air Temperature inside a Heated Foil Tunnel" Sensors 20, no. 3: 652. https://doi.org/10.3390/s20030652
APA StyleFrancik, S., & Kurpaska, S. (2020). The Use of Artificial Neural Networks for Forecasting of Air Temperature inside a Heated Foil Tunnel. Sensors, 20(3), 652. https://doi.org/10.3390/s20030652