Multi-Temporal InSAR Analysis for Monitoring Ground Deformation in Amorgos Island, Greece †
Abstract
:1. Introduction
2. Tectonic Setting
3. Data-Sets and Processing Strategy
3.1. The 2003–2010 Period
3.2. The 2014–2019 Period
4. Results
4.1. The 2003–2010 Period
4.2. The 2014–2019 Period
5. LOS Displacements Decomposition
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- ISC-GEM. The ISC-GEM Global Instrumental Earthquake Catalogue; Version 4.0, Dated 26 January 2017. 2018. Available online: http://www.isc.ac.uk/iscgem/download.php (accessed on 16 October 2019).
- Papadopoulos, G.A.; Pavlides, S.B. The large 1956 earthquake in the South Aegean: Macroseismic field configuration, faulting, and neotectonics of Amorgos Island. Earth Planet. Sci. Lett. 1992, 113, 383–396. [Google Scholar] [CrossRef]
- Galanopoulos, A.G. The seismic sea-wave of 9 July 1956. Prakt. Acad. Athens 1957, 32, 90–101, (In Greek with English abstract). [Google Scholar]
- Ambraseys, N.N. The seismic sea-wave of July 1956 in the Greek Archipelago. J. Geophys. Res. 1960, 65, 1257–1265. [Google Scholar] [CrossRef]
- Perissoratis, C.; Papadopoulos, G. Sediment instability and slumping in the Southern Aegean Sea and the case history of the 1956 tsunami. Mar. Geol. 1999, 161, 287–305. [Google Scholar] [CrossRef]
- Beisel, S.; Chubarov, L.; Didenkulova, I.; Kit, E.; Levin, A.; Pelinovsky, E.; Shokin, Y.; Sladkevich, M. The 1956 Greek tsunami recorded at Yafo, Israel, and its numerical modeling. J. Geophys. Res. 2009, 114, C09002. [Google Scholar] [CrossRef] [Green Version]
- Okal, E.A.; Synolakis, C.E.; Uslu, B.; Kalligeris, N.; Voukouvalas, E. The 1956 earthquake and tsunami in Amorgos, Greece. Geophys. J. Int. 2009, 178, 1533–1554. [Google Scholar] [CrossRef] [Green Version]
- Papazachos, B.C.; Papazachou, C. The Earthquakes of Greece; Ziti Publications: Thessaloniki, Greece, 2009; p. 286. (In Greek) [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Svigkas, N.; Papoutsis, I.; Loupasakis, C.; Tsangaratos, P.; Kiratzi, A.; Kontoes, C. InSAR time-series monitoring of ground displacement trends in an industrial area (Oreokastro-Thessaloniki, Greece): Detection of natural surface rebound and new tectonic insights. Environ. Earth Sci. 2017, 76, 195. [Google Scholar] [CrossRef]
- Svigkas, N.; Papoutsis, I.; Loupasakis, C.; Tsangaratos, P.; Kiratzi, A.; Kontoes, C. Radar Space Measurements of the Deforming Trends at Northern Greece Resulting from Underground Water Activity. In Advances in Remote Sensing and Geo Informatics Applications. Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development); El-Askary, H., Lee, S., Heggy, E., Pradhan, B., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Agalos, A.; Charalampakis, M.; Kontoes, C.; Papoutsis, I.; Atzori, S.; Svigkas, N.; Triantafyllou, I. Fault models for the Bodrum–Kos tsunamigenic earthquake (Mw6.6) of 20 July 2017 in the east Aegean Sea. J. Geodyn. 2019, 131. [Google Scholar] [CrossRef]
- Basili, R.; Kastelic, V.; Demircioglu, M.B.; Garcia Moreno, D.; Nemser, E.S.; Petricca, P.; Sboras, S.P.; Besana-Ostman, G.M.; Cabral, J.; Camelbeeck, T.; et al. The European Database of Seismogenic Faults (EDSF) Compiled in the Framework of the Project Share 2013. Available online: http://diss.rm.ingv.it/share-edsf/ (accessed on 18 November 2018).
- Rosenbaum, G.; Ring, U. Structure and metamorphism of Amorgos: A field excursion. Inside the Aegean Metamorphic Core Complexes; Gordon, L.; Forster, M.A.; Eds.; Electronic Edition. J. Virtual Explor. 2007, 27, 7. [Google Scholar] [CrossRef]
- Stiros, S.; Marangou, L.; Arnold, M. Quarternary uplift and tilting of Amorgos Island (southern Aegean) and the 1956 earthquake. Earth Planet. Sci. Lett. 1994, 128, 65–76. [Google Scholar] [CrossRef]
- Dominey-Howes, D. Sedimentary deposits associated with the July 9th 1956 Aegean Sea Tsunami. Phys. Chem. Earth 1996, 21, 51–55. [Google Scholar] [CrossRef]
- Dominey-Howes, D.; Cundy, A.; Croudace, I. High energy marine flood deposits on Astypalea Island, Greece: Possible evidence for the AD 1956 southern Aegean tsunami. Mar. Geol. 2000, 163, 303–315. [Google Scholar] [CrossRef]
- Brüstle, A.; Friederich, W.; Meier, T.; Gross, C. Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms. Solid Earth 2014, 5, 1027–1044. [Google Scholar] [CrossRef] [Green Version]
- Bohnhoff, M.; Rische, M.; Meier, T.; Becker, D.; Stavrakakis, G.; Harjes, H.P. Microseismic activity in the Hellenic Volcanic Arc, Greece, with emphasis on the seismotectonic setting of the Santorini-Amorgos zone. Tectonophysics 2006, 423, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Brüstle, A. Seismicity of the Eastern Hellenic Subduction Zone. Ph.D. Thesis, Fakultät für Geowissenschaften, Ruhr-Universität Bochum, Bochum, Germany, 2012. [Google Scholar]
- ESA Sentinel Application Platform v.7.0. 2018. Available online: http://step.esa.int/main/toolboxes/snap/ (accessed on 18 November 2018).
- Delgado Blasco, J.M.; Foumelis, M. Automated Snap Sentinel-1 Dinsar Processing for Stamps Psi with Open Souce Tools. Available online: https://zenodo.org/record/1322353/ (accessed on 14 September 2018).
- Foumelis, M.; Delgado Blasco, J.M.; Desnos, Y.-L.; Engdahl, M.; Fernandez, D.; Veci, L.; Lu, J.; Wong, C. ESA SNAP-StaMPS Integrated processing for Sentinel-1 Persistent Scatterer Interferometry. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1364–1367. [Google Scholar] [CrossRef]
- Rosen, P.; Hensley, S.; Peltzer, G.; Simons, M. Updated Repeat Orbit Interferometry Package Released. Eos Trans. Am. Geophys. Union 2004, 85, 47. [Google Scholar] [CrossRef]
- Kampes, B.; Usai, S. Delft Object oriented radar interferometric software. In Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 16–20 August 1999. [Google Scholar]
- Hooper, A.; Segall, P.; Zebker, H. Persistent Scatterer InSAR for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos. J. Geophys. Res. 2007, 112, B07407. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.P.S.; Walters, R.J.; Wright, T.J.; Hooper, A.J.; Parker, D.J. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.J.; Hooper, A.; Hanssen, R.; Bastos, L.; Ruiz, A. Persistent scatterer insar: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens. Environ. 2011, 115, 2652–2663. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans. AGU 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Bamler, R.; Just, D. Phase statistics and decorrelation in SAR interferograms. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS ’93), Tokyo, Japan, 18–21 August; pp. 980–984. [CrossRef]
- De Zan, F.; Monti Guarnieri, A. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng. Geol. 2003, 68, 3–14. [Google Scholar] [CrossRef]
- Peltier, A.; Bianchi, M.; Kaminski, E.; Komorowski, J.C.; Rucci, A.; Staudacher, T. PSInSAR as a new tool to monitor pre-eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise. Geophys. Res. Lett. 2010, 37, L12301. [Google Scholar] [CrossRef]
- Samieie-Esfahany, S.; Hanssen, R.; van Thienen-Visser, K.; Muntendam-Bos, A. On the effect of horizontal deformation on InSAR subsidence estimates. In Proceedings of the Workshop Fringe 2009, Frascati, Italy, 30 November–4 December 2009. [Google Scholar]
- Hanssen, R. Radar Interferometry: Data Interpretation and Error Analysis. Remote Sensing and Digital Image Processing, 2nd ed.; van der Meer, F., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Ketelaar, G.; van Leijen, F.; Marinkovic, P.; Hanssen, R. Multi-track PS-InSAR datum connection. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007), Barcelona, Spain, 23–28 July 2007; pp. 2481–2484. [Google Scholar]
- Papoutsis, I.; Kontoes, C.; Paradissis, D. Multi-Stack Persistent Scatterer Interferometry Analysis in Wider Athens, Greece. Remote Sens. 2017, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, M.E.; Simons, M.; Rosen, P.A.; Hensley, S.; Webb, F.H. Co-seismic slip from the 1995 July 30 MW = 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophys. J. Int. 2002, 150, 362–376. [Google Scholar] [CrossRef] [Green Version]
- Jónsson, S.; Zebker, H.; Segall, P.; Amelung, F.C. Fault slip distribution of the 1999 Mw 7.1 hector mine, California earthquake, estimated from satellite radar and GPS measurements. Bull. Seismol. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Simons, M.; Fialko, Y.; Rivera, L. Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bull. Seismol. Soc. Am. 2002, 92, 1390–1402. [Google Scholar] [CrossRef]
- Lohman, R.B.; Simons, M. Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling. Geochem. Geophys. Geosyst. 2005, 6, Q01007. [Google Scholar] [CrossRef]
- Wang, C.; Ding, X.; Shan, X.; Zhang, L.; Jiang, M. Slip distribution of the 2011 Tohoku earthquake derived from joint inversion of GPS, InSAR and seafloor GPS/acoustic measurements. J. Asian Earth Sci. 2012, 57, 128–136. [Google Scholar] [CrossRef]
- Elsasser, W.M. Convection and Stress Propagation in the Upper Mantle. In The Application of Modern Physics to the Earth and Planetary Interiors; Runcorn, S.K., Ed.; Wiley: New York, NY, USA, 1969; pp. 223–246. [Google Scholar]
- Li, V.C.; Rice, J.R. Crustal deformation in great California earthquake cycles. J. Geophys. Res. 1987, 92, 11533–11551. [Google Scholar] [CrossRef] [Green Version]
- Rydelek, P.A.; Sacks, I.S. Asthenospheric viscosity and stress diffusion: A mechanism to explain correlated earthquakes and surface deformation in NE Japan. Geophys. J. Int. 1990, 100, 39–58. [Google Scholar] [CrossRef] [Green Version]
- Pollitz, F.F. Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model. Geophys. J. Int. 2003, 155, 57–78. [Google Scholar] [CrossRef] [Green Version]
Sensors | |||
---|---|---|---|
Envisat Asar | Sentinel | ||
Number of scenes | 24 | 54 | 70 |
Relative orbit | 57 | 36 | 29 |
Time interval | 2003–2010 | 2014–2019 | 2014–2019 |
Swath type | I2 | n/a | n/a |
Sensor’s pass | Ascending | Descending | Ascending |
SAR mode | n/a | Interferometric Wide swath (IW) | Interferometric Wide swath (IW) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatza, S.; Papoutsis, I.; Paradissis, D.; Kontoes, C.; Papadopoulos, G.A. Multi-Temporal InSAR Analysis for Monitoring Ground Deformation in Amorgos Island, Greece. Sensors 2020, 20, 338. https://doi.org/10.3390/s20020338
Alatza S, Papoutsis I, Paradissis D, Kontoes C, Papadopoulos GA. Multi-Temporal InSAR Analysis for Monitoring Ground Deformation in Amorgos Island, Greece. Sensors. 2020; 20(2):338. https://doi.org/10.3390/s20020338
Chicago/Turabian StyleAlatza, Stavroula, Ioannis Papoutsis, Demitris Paradissis, Charalampos Kontoes, and Gerassimos A. Papadopoulos. 2020. "Multi-Temporal InSAR Analysis for Monitoring Ground Deformation in Amorgos Island, Greece" Sensors 20, no. 2: 338. https://doi.org/10.3390/s20020338
APA StyleAlatza, S., Papoutsis, I., Paradissis, D., Kontoes, C., & Papadopoulos, G. A. (2020). Multi-Temporal InSAR Analysis for Monitoring Ground Deformation in Amorgos Island, Greece. Sensors, 20(2), 338. https://doi.org/10.3390/s20020338