Traditional Chinese Medicine Pulse Diagnosis on a Smartphone Using Skin Impedance at Acupoints: A Feasibility Study
Abstract
:1. Introduction
2. Method
2.1. Sensors
2.2. Smartphone
2.3. Cloud Server
3. Results
3.1. Validation of PPG/GSR Sensor Devices
3.2. Prediction of the Wiry Pulse
4. Conclusions and Suggestions for Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
Disclosure
References
- Wang, L.; Shang, Q.Q.; Wang, Y.Q.; Qian, P.; Guo, R.; Yan, H.X. Discussion on international standard of English translation for TCM pulse condition name terms. Chin. J. Inf. TCM 2017, 24, 5–8. [Google Scholar]
- Litscher, G.; Yannacopoulos, T.; Kreisl, P. Nogier reflex: Physiological and experimental results in auricular medicine—A new hypothesis. Medicines 2018, 5, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.Y.; Chang, R.S.; Jwo, K.W.; Hsu, C.C.; Tsao, C.P. A non-contact pulse automatic positioning measurement system for traditional Chinese medicine. Sensors 2015, 15, 9899–9914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lygouras, J.N.; Tsalides, P.G. Optical-fiber finger photo-plethysmograph using digital techniques. IEEE Sens. J. 2002, 2, 20–25. [Google Scholar] [CrossRef]
- Yoon, Y.Z.; Lee, M.H.; Soh, K.S. Pulse type classification by varying contact pressure. IEEE Eng. Med. Biol. 2000, 19, 106–110. [Google Scholar] [CrossRef]
- Lin, Y.; Leng, H.; Yang, G.; Cai, H. An intelligent noninvasive sensor for driver pulse wave measurement. IEEE Sens. J. 2007, 7, 790–799. [Google Scholar] [CrossRef]
- Joshi, A.B.; Kalange, A.E.; Bodas, D.; Gangal, S.A. Simulations of piezoelectric pressure sensor for radial artery pulse measurement. Mater. Sci. Eng. B 2010, 168, 250–253. [Google Scholar] [CrossRef]
- Chung, Y.F.; Chu, Y.W.; Chung, C.Y.; Hu, C.S.; Luo, C.H.; Yeh, C.C. New Vision of the Pulse Conditions Using Bi-Sensing Pulse Diagnosis Instrument. In Proceedings of the 1st International Conference on Orange Technologies (ICOT), Tainan, Taiwan, 12–16 March 2013; IEEE: Piscataway Township, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Yuan, H. Chinese Pulse Diagnosis; Elsevier Urban Fischer: München, Germany, 2009. [Google Scholar]
- Hernandez-Garc, A.; Konig, P. Data augmentation instead of explicit regularization. arXiv 2018, arXiv:1806.03852. [Google Scholar]
- Tago, K.; Wang, H.; Jin, Q. Classification of TCM Pulse Diagnoses Based on Pulse and Periodic Features from Personal Health Data. In Proceedings of the Global Communications Conference (GLOBECOM), Wuhan, China, 6–8 July 2007. [Google Scholar]
- Moser, M.; Frühwirth, M.; Messerschmidt, D.; Goswami, N.; Dorfer, L.; Bahr, F.; Opitz, G. Investigation of a micro-test for circulatory autonomic nervous system responses. Front. Physiol. 2017, 8, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W. Movement of Qi; Chinese People’s University Press: Beijing, China, 2006; p. 212. [Google Scholar]
- Wei, L.Y.; Winchester, T. Electronic diagnose of arterial pulse. J. Med. Eng. Technol. 1985, 9, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Study on the Correlation between Viscera Theory of TCM and Organ Resonance Theory by Analyzing Pulse Harmonic Spectrum. Ph.D. Thesis, China Institute of Medicine, China Medical College of Taiwan, Taichung, Taiwan, 1993. [Google Scholar]
- Zhang, Y.; Liu, J. Design and Realization of TCM Pulse Analysis and Management System. In Proceedings of the 2018 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Xiamen, China, 25–26 January 2018; pp. 488–491. [Google Scholar] [CrossRef]
- Xue, L.; Fu, Z.; Qian, P.; Wang, L.; Zhang, H.; Zhou, X.; Zhang, W.; Li, F. Computerized Wrist Pulse Signal Diagnosis Using Gradient Boosting Decision Tree. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 1941–1947. [Google Scholar] [CrossRef]
- Yan, H.X.; Wang, Y.Q.; Guo, R.; Liu, Z.R.; Li, F.F.; Run, F.Y.; Hong, Y.J.; Yan, J.J. Feature Extraction and Recognition for Pulse Waveform in Traditional Chinese Medicine Based on Hemodynamics Principle. In Proceedings of the IEEE ICCA, Xiamen, China, 9–11 June 2010; pp. 972–976. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, J.W.; Jung, W.G.; Lee, G.K. The Periodic Moving Average Filter for Removing Motion Artifacts from PPG Signals. Int. J. Control Autom. Syst. 2007, 5, 701–706. [Google Scholar]
- Elgendi, M.; Norton, I.; Brearley, M.; Abbott, D.; Schuurmans, D. Systolic peak detection in acceleration photoplethysmograms measured from emergency responders in tropical conditions. PLoS ONE 2013, 8, e76585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoyagi, T.; Miyasaka, K. Pulse oximetry: Its invention, contribution to medicine, and future tasks. Anesth. Analg. 2002, 94, 51–53. [Google Scholar]
- Cowie, M.R.; Sarkar, S.; Koehler, J. Development and validation of an integrated diagnostic algorithm derived from parameters monitored in implantable devices for identifying patients at risk for heart failure hospitalization in an ambulatory setting. Eur. Heart J. 2013, 34, 2472–2480. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, M.F.; Taylor, M.G. Vascular impedance of the femoral bed. Circ. Res. 1966, 18, 126. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar] [CrossRef]
- Tang, A.; Chung, J.; Wong, T. Digitalizing Traditional Chinese Medicine Pulse Diagnosis with Artificial Neural Network. Telemed. J. E-Health 2011, 18, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.C. Review of Traditional Chinese Medicine Pulse Diagnosis Quantification. Complement. Ther. Contemp. Healthc. 2012, 10, 5044–5772. [Google Scholar]
- Balouji, E.; Gu, I.Y.H.; Bollen, M.H.J.; Bagheri, A.; Nazari, M. A LSTM-based deep learning method with application to voltage dip classification. In Proceedings of the 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenija, 13–16 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Suh, H.; Seo, S.; Kim, Y.H. Deep Learning-Based Hazardous Sound Classification for the Hard of Hearing and Deaf. In Proceedings of the 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA, 6–8 December 2018; pp. 073–077. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Ince, T.; Abdeljaber, O.; Avci, O.; Gabbouj, M. 1-D Convolutional Neural Networks for Signal Processing Applications. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 8360–8364. [Google Scholar] [CrossRef]
- Kwon, J.; Lee, S.; Kwak, N. Human Detection by Deep Neural Networks Recognizing Micro-Doppler Signals of Radar. In Proceedings of the 2018 15th European Radar Conference (EuRAD), Madrid, Spain, 26–28 September 2018; pp. 198–201. [Google Scholar] [CrossRef]
- Pasupa, K.; Sunhem, W. A comparison between shallow and deep architecture classifiers on small dataset. In Proceedings of the 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Japan, 5–6 October 2016; pp. 1–6. [Google Scholar] [CrossRef]
Time-Domain Features of PPG Data (As Shown in Figure 5) | ||
---|---|---|
1 | Pulse amplitude difference between pulse wave systolic peak (PWSP) and pulse wave diastolic peak (PWDP) | |
2 | Amplitude of pulse wave diastolic peak (PWDP) | |
3 | Angle of pulse wave systolic peak (PWSP) | |
4 | Pulse wave amplitude (PWA) | |
5 | Duration of systolic phase | |
6 | Duration of diastolic phase | |
7 | Pulse propagation time (PPT) between pulse wave systolic peak (PWSP) and pulse wave diastolic peak (PWDP) | |
8 | Inter-beat interval (IBI) | |
Frequency domain features of PPG data | ||
the nth harmonic of base frequency (e.g., if the heartrate is 96 bpm, then C1 corresponds to 1.6 Hz, C2 corresponds to 3.2 Hz, …., etc.) | Corresponding TCM Meridian | |
C1 | Liver Meridian | |
C2 | Kidney Meridian | |
C3 | Spleen Meridian | |
C4 | Lung Meridian | |
C5 | Stomach Meridian | |
C6 | Gallbladder Meridian | |
C7 | Bladder Meridian | |
C8 | Large Intestine Meridian | |
C9 | San-yin-jiao Meridian | |
C10 | Small Intestine Meridian | |
Skin impedance of acupoints from 12 meridians (including both left and right hands) | ||
Taiyuan (LU9) | Daling (PC7) | Shenmen (HT7) |
Yanggu (SI5) | Yangchi (TE4) | Yangxi (LI5) |
Shugu (BL65) | Taichong (LV3) | Chongyang (ST42) |
Taibai (SP3) | Chiu Hsi (GB40) | Dazhong (KD4) |
Feature Used | Accuracy |
---|---|
Only 24 GSR features | 62.5% |
18 PPG (time-/frequency-domain) features | 80% |
8 PPG time-domain features | 65% |
10 PPG frequency-domain features | 62.5% |
8 PPG time-domain and 24 GSR features | 72.5% |
10 PPG frequency-domain and 24 GSR features | 75% |
18 PPG (time-/frequency-domain) features and 24 GSR features | 91% |
Feature | Weight | Wiry Pulse Group (mean ± std) | Non-Wiry Pulse Group (mean ± std) | p Value |
---|---|---|---|---|
PPG (2) | 0.24636 | 2.92 0.0303 | 1.534 0.0838 | <0.001 ** |
PPG (3) | 0.225339 | 155.0205 20.5951 | 47.8 13.2765 | <0.001 ** |
PPG-C2 | 0.214329 | 0.0046 0.0049 | 0.0179 0.0091 | <0.001 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, K.-C.; Litscher, G.; Hung, T.-H. Traditional Chinese Medicine Pulse Diagnosis on a Smartphone Using Skin Impedance at Acupoints: A Feasibility Study. Sensors 2020, 20, 4618. https://doi.org/10.3390/s20164618
Lan K-C, Litscher G, Hung T-H. Traditional Chinese Medicine Pulse Diagnosis on a Smartphone Using Skin Impedance at Acupoints: A Feasibility Study. Sensors. 2020; 20(16):4618. https://doi.org/10.3390/s20164618
Chicago/Turabian StyleLan, Kun-Chan, Gerhard Litscher, and Te-Hsuan Hung. 2020. "Traditional Chinese Medicine Pulse Diagnosis on a Smartphone Using Skin Impedance at Acupoints: A Feasibility Study" Sensors 20, no. 16: 4618. https://doi.org/10.3390/s20164618
APA StyleLan, K.-C., Litscher, G., & Hung, T.-H. (2020). Traditional Chinese Medicine Pulse Diagnosis on a Smartphone Using Skin Impedance at Acupoints: A Feasibility Study. Sensors, 20(16), 4618. https://doi.org/10.3390/s20164618