# Flexible Textile-Based Pressure Sensing System Applied in the Operating Room for Pressure Injury Monitoring of Cardiac Operation Patients

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{10}

^{11}

^{12}

^{13}

^{14}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Experimental

^{2}with a spacing of 3 cm to the neighboring sensor. The total dimension of this fabricated sensing pad with a dimension of 30.8 × 56.6 cm

^{2}for 10 × 18 points was fabricated to investigate basic pressure sensing and the noise interference of capacitive sensors. The picture and schematic plot of this flexible pressure sensor array are shown in Figure 1a. The following section will present the basic operation mechanism of the pressure sensor and impedance measurement system.

_{c}is the force constant that can be determined by the material and its geometry, and Δd is the distance of deformation such as the reduced thickness of the flexible capacitance of the pressure sensor. Therefore, Δd equals F/kc, which can be applied to Equation (2) to generate Equation (4).

_{c}), which is the basic operation mechanism of the flexible pressure sensor.

_{t}is the Kalman gain with the variance predicted error divided by the difference in variance between the current and predicted error, H is the corresponding matrix of multi-parameters.$\text{}{\widehat{x}}_{t}$ is the updated impedance in estimation, z

_{t}is the current measured impedance, and P

_{t}is the error variance of the current value. The detailed block diagram of this designed Kalman filter is shown in Figure 1b. Therefore, the value can be closely forecasted and measured using a lower impact of error variance in real applications.

## 3. Results and Discussion

## 4. Discussion

## Supplementary Materials

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Padula, W.V.; Pronovost, P.J.; Makic, M.B.F.; Wald, H.L.; Moran, D.; Mishra, M.K.; Meltzer, D.O. Value of hospital resources for effective pressure injury prevention: A cost-effectiveness analysis. BMJ Qual. Saf.
**2019**, 28, 132–141. [Google Scholar] [CrossRef] [PubMed] - Rees, R.S.; Hirshberg, J.A. Wound Care Centers: Costs, Care, and Strategies. Adv. Skin. Wound Care
**1999**, 12, 4–7. [Google Scholar] - Chan, B.; Ieraci, L.; Mitsakakis, N.; Pham, B.; Krahn, M. Net costs of hospital-acquired and pre-admission PUs among older people hospitalised in Ontario. J. Wound Care
**2013**, 22, 341–342. [Google Scholar] [CrossRef] [PubMed] - Schoonhoven, L.; Defloor, T.; Grypdonck, M.H. Incidence of pressure ulcers due to surgery. J. Clin. Nurs.
**2002**, 11, 479–487. [Google Scholar] [CrossRef] [PubMed] - Shaw, L.F.; Chang, P.C.; Lee, J.F.; Kung, H.Y.; Tung, T.H. Incidence and predicted risk factors of pressure ulcers in surgical patients: Experience at a medical center in Taipei, Taiwan, Biomed. Res. Int.
**2014**, 2014, 416896. [Google Scholar] [CrossRef] - Aronovitch, S.A. Intraoperatively acquired pressure ulcer prevalence: A national study. J. Wound Ostomy Cont. Nurs.
**1999**, 26, 130–136. [Google Scholar] [CrossRef] - Cullum, N.; Mcinnes, E.; Bell-Syer, S.E.M.; Dumville, J.C.; Legood, R. Support surfaces for pressure ulcer prevention. Cochrane Database Syst. Rev.
**2008**, 9, CD00173. [Google Scholar] [CrossRef] - Kosiak, M. Etiology and Pathology of Ischemic Ulcers. Arch. Phys. Med. Rehabil.
**1959**, 40, 62–69. [Google Scholar] [PubMed] - Reswick, J.B.; Rogers, J. Experience at Ranchos Los Amigos Hospital with Devices and Techniques to Prevent Pressure Sores. In Bed Sore Biomechanics; Palgrave: London, UK, 1976; pp. 301–310. [Google Scholar]
- Bergstrom, N. Patients at risk for pressure ulcers and evidence based care for pressure ulcer prevention. In Pressure Ulcer Research; Springer: Berlin/Heidelberg, Germany, 2005; pp. 35–50. [Google Scholar] [CrossRef]
- Kirkland-Walsh, H.; Teleten, O.; Wilson, M.; Raingruber, B. Pressure mapping comparison of four OR surfaces. ARON J.
**2015**, 102, 61.e1–61.e9. [Google Scholar] [CrossRef] [Green Version] - Bush, T.R.; Leitkam, S.; Aurino, M.; Cooper, A.; Basson, M.D. A comparison of pressure mapping between two pressure-reducing methods for the sacral region. J. Wound Ostomy Cont. Nurs.
**2015**, 42, 338–345. [Google Scholar] [CrossRef] - Kubba, A.E.; Hasson, A.; Kubba, A.I.; Hall, G. A micro-capacitive pressure sensor design and modelling. J. Sens. Sens. Syst.
**2016**, 5, 95–112. [Google Scholar] [CrossRef] [Green Version] - Ko, Y.; Kim, D.; Kwon, G.; You, J. High-Performance Resistive Pressure Sensor Based on Elastic Composite Hydrogel of Silver Nanowires and Poly(ethylene glycol). Micromachines
**2018**, 9, 438. [Google Scholar] [CrossRef] [Green Version] - Jiang, X.; Kim, K.; Zhang, S.; Johnson, J.; Salazar, G. High-Temperature Piezoelectric Sensing. Sensors
**2014**, 14, 144–169. [Google Scholar] [CrossRef] [Green Version] - Yang, X.; Wang, Y.; Qing, X. A Flexible Capacitive Pressure Sensor Based on Ionic Liquid. Sensors
**2018**, 18, 2395. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Xu, F.; Li, X.; Shi, Y.; Li, L.; Wang, W.; He, L.; Liu, R. Recent Developments for Flexible Pressure Sensors: A Review. Micromachines
**2018**, 9, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Kakakhel1, M.B.; Jirasek, A.; Johnston, H.; Kairn, T.; Trapp, J.V. Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: Zero-scan coupled with adaptive mean filtering. Australas Phys. Eng. Sci. Med.
**2017**, 40, 159–165. [Google Scholar] [CrossRef] [PubMed] - Liu, D.; He, C.; Zhao, Q.; Yang, Z.; Hao, Y.; Yan, G. Digital signal processing for a micromachined vibratory gyroscope based on a three dimensional adaptive filter demodulator. Measurement
**2014**, 50, 198–202. [Google Scholar] [CrossRef] - Funai, A.K.; Fessler, J.A.; Yeo, D.T.B.; Noll, D.C.; Olafsson, V.T. Reqularized field map estimation in MRI. IEEE Trans. Med. Imaging
**2008**, 27, 1484–1494. [Google Scholar] [CrossRef] [Green Version] - Ziegler, S.I.; Pichler, B.J.; Boening, G.; Rafecas, M.; Pimpl, W.; Lorenz, E.; Schmitz, N.; Schwaiger, M. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. Eur. J. Nucl. Med. Mol. Imaging
**2001**, 28, 136–143. [Google Scholar] [CrossRef] - Vikalo, H.; Hassibi, B.; Hassibi, A. A statistical model for microarrays, optimal estimation algorithms, and limits of performace. IEEE Trans. Signal Process.
**2006**, 54, 2444–2455. [Google Scholar] [CrossRef] - Sedehi, O.; Katafygiotis, L.S.; Papadimitriou, C. Hierarchical Bayesian operational modal analysis: Theory and computations. Mech. Syst. Signal Process.
**2020**, 140, 1–27. [Google Scholar] [CrossRef] [Green Version] - Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell.
**2012**, 34, 2274–2281. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process.
**2014**, 62, 531–544. [Google Scholar] [CrossRef] - Zhou, S.; Liu, N.; Shen, C.; Zhang, L.; He, T.; Yu, B.; Li, J. An adaptive Kalman filtering algorithm based on back-propagation (BP) neural network applied for simultaneously detection of exhaled CO and N2O. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
**2019**, 223, 1–8. [Google Scholar] [CrossRef] - Auger, F.; Hilairet, M.; Guerrero, J.M.; Monmasson, E.; Orlowska-Kowalska, T.; Katsura, S. Industrial Applications of the Kalman Filter: A Review. IEEE Trans. Ind. Electron.
**2013**, 60, 5458–5471. [Google Scholar] [CrossRef] [Green Version] - Li, Q.; Mark, R.G.; Clifford, G.D. Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiol. Meas.
**2008**, 29, 15–32. [Google Scholar] [CrossRef] [Green Version] - Irwin, J.D.; Wu, C.-H. Basic Engineering Circuit Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1996; ISBN 13-978-1-118-53929-3. [Google Scholar]
- Vullings, R.; de Vries, B.; Bergmans, J.W.M. An adaptive Kalman filter for ECG signal enhancement. IEEE Trans. Biomed. Eng.
**2011**, 58, 1094–1103. [Google Scholar] [CrossRef] [Green Version] - Enshaeifar, S.; Spyrou, L.; Sanei, S.; Took, C.C. A regularised EEG informed Kalman filtering algorithm. Biomed. Signal Process. Control
**2016**, 25, 196–200. [Google Scholar] [CrossRef] [Green Version] - Chen, S. Kalman filter for robot vision: A survey. IEEE Trans. Ind. Electron.
**2012**, 59, 4409–4420. [Google Scholar] [CrossRef] - Mitsantisuk, C.; Ohishi, K.; Katsura, S. Estimation of action/reaction forces for the bilateral control using Kalman filter. IEEE Trans. Ind. Electron.
**2012**, 59, 4383–4393. [Google Scholar] [CrossRef] - Hyun, S.; Li, X.; Vermillion, B.; Newton, C.; Fall, M.; Kaewprag, P.; Moffatt-Bruce, S.; Lenz, E.R. Body Mass Index and Pressure Ulcers: Improved Predictability of Pressure Ulcers in Intensive Care Patients. Am. J. Crit. Care
**2014**, 23, 494–501. [Google Scholar] [CrossRef] [PubMed] - Matsuo, J.; Sugama, J.; Sanada, H.; Okuwa, M.; Nakatani, T.; Konya, C.; Sakamoto, J. Development and validity of a new model for assessing pressure redistribution properties of support surfaces. J. Tissue Viability
**2011**, 20, 55–66. [Google Scholar] [CrossRef] [PubMed] - Chai, C.Y.; Sadou, O.; Worsley, P.R.; Bader, D.L. Pressure signatures can influence tissue response for individuals supported on an alternating pressure mattress. J. Tissue Viability
**2017**, 26, 180–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**(

**a**) Schematic plot and picture of the flexible pressure sensor. (

**b**) Operation of the Kalman filter. (

**c**) Block diagram. (

**d**) Image of the developed impedance readout system.

**Figure 2.**Picture of the real situation for the setup in the operation room: (

**a**) A flexible pressure mattress on an operation bed with (

**b**) a nurse lying on it.

**Figure 3.**(

**a**) Typical response between the applied weight and readout value of the single point of this pressure-sensing pad compared with impedance analyzer. (

**b**) Capacitance. (

**c**) Impedance correlation between the readout system and impedance analyzer.

**Figure 4.**Time-dependent response of the single flexible pressure sensor with (

**a**) designed noises of input by the modification of R and Q for (

**b**) 0.1/0.1, (

**c**) 0.01/0.1 and (

**d**) 0.1/0.01 in the Kalman filter.

**Figure 5.**Time-dependent response of the single flexible pressure sensor with a regular pressing force and 24% duty cycle: (

**a**) without and (

**b**) with the Kalman filter.

**Figure 6.**(

**a**) Number of patients with and without pressure injury classified by the patient body mass index (BMI). Typical interfacial pressure distribution at the 3rd hour for patients with 3 different BMIs shown in (

**b**) 2D and (

**c**) 3D images.

**Figure 7.**(

**a**) Time-dependent 2D pressure image for a typical patient with a low BMI and pressure injury and (

**b**) time-dependent pressure trending of the sacrum area for patients with and without pressure injury according to the real measurement in cardiac operations.

n | Male | Female | Height | Weight | BMI | Age | Operation Time (hr) | |
---|---|---|---|---|---|---|---|---|

PI * | 11 | 6 | 4 | 163.4 ± 12.9 | 66.2 ± 18.5 | 24.7 ± 6.1 | 54.4 ± 8.1 | 7.9 ± 2.2 |

NPI ** | 37 | 26 | 11 | 163.3 ± 10.3 | 66.8 ± 11.8 | 24.9 ± 3.5 | 58.1 ± 12.1 | 8.0 ± 2.4 |

Total | 47 | 32 | 15 | 163.3 ± 13.2 | 66.7 ± 13.2 | 24.9 ± 4.1 | 57.3 ± 11.4 | 8.0 ± 2.3 |

**Table 2.**Patient number with and without pressure injury classified by 5 different body mass index (BMI) groups.

Ratio (%) & [Total Patient Number] | |||||
---|---|---|---|---|---|

BMI | 16.5–20.5 | 20.5–24.5 | 24.5–28.5 | 28.5–32.5 | 32.5–36.5 |

PI * | 30 [3] | 20 [2] | 20 [2] | 10 [1] | 20 [2] |

NPI ** | 8.1 [3] | 35.1 [13] | 40.5 [15] | 13.5 [5] | 2.7 [1] |

Type Name/ Company | Sensor Specification | System Specification | Clinic Test | Year/ Ref. | |||
---|---|---|---|---|---|---|---|

Substrate Type | Sensor Pitch (cm) | Total Sensor no. | Digitized Level | Accuracy (%) | Patient no. | ||

CONFORMat@/ NITTA corp. | Flexible | 2.17 | 32 × 32 | N/A | ±10% | 0 | 2011/[35] |

5315/Tekscan Inc. | Flexible | 1 | 42 × 48 | 256 | ±10% | 0 | 2015/[12] |

PX100/ XSENSOR Tech. | Flexible | 1.27 | 64 × 160 | N/A | ±10% | 0 | 2015/[11] |

Mark III/ Talley Group Ltd. | N/A | 3 | 12 × 8 | N/A | N/A | 0 | 2017/[36] |

ePad-ExtraS50 /eBio Tech. | Textile | 3.2 | 14 × 18 | 1024 | ±8% [±0.2%] * | 47 | This work |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shih, D.-F.; Wang, J.-L.; Chao, S.-C.; Chen, Y.-F.; Liu, K.-S.; Chiang, Y.-S.; Wang, C.; Chang, M.-Y.; Yeh, S.-L.; Chu, P.-H.;
et al. Flexible Textile-Based Pressure Sensing System Applied in the Operating Room for Pressure Injury Monitoring of Cardiac Operation Patients. *Sensors* **2020**, *20*, 4619.
https://doi.org/10.3390/s20164619

**AMA Style**

Shih D-F, Wang J-L, Chao S-C, Chen Y-F, Liu K-S, Chiang Y-S, Wang C, Chang M-Y, Yeh S-L, Chu P-H,
et al. Flexible Textile-Based Pressure Sensing System Applied in the Operating Room for Pressure Injury Monitoring of Cardiac Operation Patients. *Sensors*. 2020; 20(16):4619.
https://doi.org/10.3390/s20164619

**Chicago/Turabian Style**

Shih, De-Fen, Jyh-Liang Wang, Sou-Chih Chao, Yin-Fa Chen, Kuo-Sheng Liu, Yi-Shan Chiang, Chi Wang, Min-Yu Chang, Shu-Ling Yeh, Pao-Hsien Chu,
and et al. 2020. "Flexible Textile-Based Pressure Sensing System Applied in the Operating Room for Pressure Injury Monitoring of Cardiac Operation Patients" *Sensors* 20, no. 16: 4619.
https://doi.org/10.3390/s20164619