A Perspective of Non-Fiber-Optical Metamaterial and Piezoelectric Material Sensing in Automated Structural Health Monitoring
Abstract
:1. Introduction
2. Non-FO Smart Materials: Metamaterials
2.1. Positive Perceptive of Metamaterials in SHM
2.2. Metamaterial Designs
2.2.1. Some Examples of Metamaterial Designs in SHM and Future Path
2.2.2. Our Near Field Metamaterial Designs
2.2.3. Brief Background of EM Surface Waves
2.2.4. Experimental Measurement of EM Surface Waves
3. Our LSP Sensor
3.1. Identification of Horizontal and Vertical Sensing Radius of a Sensing Zone
3.1.1. Horizontal Radius
3.1.2. Vertical Radius
3.2. Water Effect on the Sensor
3.3. Additional Role of Adjacent Sensor as Catchment of EM Waves
3.3.1. Specimen
3.3.2. Novel Principle
3.3.3. Experimental Procedure
3.3.4. Discussions
4. Economical Miniaturized Arduino-Based Metamaterial Setup
4.1. Factors Effecting Economics in SHM
4.2. Arduino Meta Setup
4.2.1. Development
4.2.2. Working Principle
4.2.3. Optimization
4.2.4. Evaluation of Kit by Load Variations
5. Other Non-FO Smart Materials
6. Summary
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations: | |
ADC | Analog to digital converter |
CMA | Civil, mechanical, and aerospace |
CAGR | Compound annual growth rate |
DC | Direct current |
EM | Electromagnetic |
FBG | Fiber Bragg grating |
FO | Fiber optical |
LCR | Inductance, capacitance, and resistance |
LED | Light-emitting diode |
LHM | Left hand metamaterials |
LSP | Localized surface plasmon |
MFC | Macro fiber composite |
MRT | Mass rapid transit |
NDT | Nondestructive testing |
N-SRR | Nested split ring resonator |
PCB | Printed circuit board |
PDMS | Polydimethyl siloxane |
PLX-DAQ | Parallax data acquisition tool |
PZT | Lead zirconate titanate |
RMSD | Root mean square deviation |
R/G/B | Red/green/black |
SHM | Structural health monitoring |
SPP | Surface plasmon polariton |
SRR | Split-ring resonator |
TW | Thin wire |
VNA | Vector network analyser |
Key Symbols: | |
Angle | |
Cartesian unit vectors | , , |
Distance vector | |
Electric complex-valued amplitude vector | |
Electric field | |
External resistor | |
Gold | Au |
Impedance | Z |
Magnetic field | |
Magnetic complex-valued amplitude vector | |
Metal and dielectric variables | , |
Permeability of the free space | |
Permittivity of the free space | |
Relative permittivity of the dielectric material | |
Resistor of LSP | |
Scattering | S |
Scattering parameter (output/input: ports 2/1) | |
Voltages (internal: Arduino and external: LSP) | |
Wave vector | |
Wave propagation | K |
Wavelength |
References
- Cawley, P. Structural health monitoring: Closing the gap between research and industrial deployment. Struct. Health Monit. 2018, 17, 1225–1244. [Google Scholar] [CrossRef] [Green Version]
- Cunfu, H.; Yaoyao, W.; Yan, L.; Yuepeng, L.; Bin, W. Design and Fabrication of Air-Based 1-3 Piezoelectric Composite Transducer for Air-Coupled Ultrasonic Applications. J. Sens. 2016. [Google Scholar] [CrossRef]
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Farrell, G. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials. Sensors 2016, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Melik, R.; Perkgoz, N.K.; Unal, E.; Dilli, Z.; Demir, H.V. Design and realization of a fully on-chip high-Q resonator working at 15 GHz on silicon. IEEE Trans. Electron Devices 2008, 55, 3459–3466. [Google Scholar] [CrossRef]
- Verma, S.K.; Bhadauria, S.S.; Akhtar, S. Review of Nondestructive Testing Methods for Condition Monitoring of Concrete Structures. J. Constr. Eng. 2013, 834572. [Google Scholar] [CrossRef]
- Kinet, D.; Mégret, P.; Goossen, K.W.; Qiu, L.; Heider, D.; Caucheteur, C. Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions. Sensors 2014, 14, 7394–7419. [Google Scholar] [CrossRef]
- Drissi, H.M.; Raman, V.; Khadour, A.; Timorian, S. Fiber Optic Sensor Embedment Study for Multi-Parameter Strain Sensing. Sensors 2017, 17, 667. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Kopsaftopoulos, F.; Dugnani, R.; Chang, F.K. Integrity monitoring of adhesively bonded joints via an electromechanical impedance-based approach. Struct. Health Monit. 2018, 17, 1031–1045. [Google Scholar] [CrossRef]
- Giurgiutiu, V.; Buli, X.; Weiping, L. Development and Testing of High-temperature Piezoelectric Wafer Active Sensors for Extreme Environments. Struct. Health Monit. 2010, 9, 513–525. [Google Scholar] [CrossRef]
- Maheshwari, M.; Annamdas, V.G.M.; Pang, J.H.L.; Asundi, A.; Tjin, S.C. Crack monitoring using multiple smart materials; fiber-optic sensors & piezo sensors. Int. J. Smart Nano Mater. 2017, 8, 41–55. [Google Scholar] [Green Version]
- Annamdas, V.G.M.; Bhalla, S.; Soh, C.K. Applications of Structural Health Monitoring Technology in Asia. Struct. Health Monit. 2017, 16, 324–346. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Soh, C.K. Evaluation of peak-free electromechanical piezo-impedance and electromagnetic contact sensing using metamaterial surface plasmons for load monitoring. Smart Mater. Struct. 2017, 26, 015003. [Google Scholar] [CrossRef]
- Worldwide Analysis on the Structural Health Monitoring Market (2018–2023). Available online: https://www.businesswire.com/news/home/20181024005372/en/Worldwide-Analysis-Structural-Health-Monitoring-Market-2018-2023 (accessed on 12 January 2019).
- Fidanboylu, K.; Efendioglu, H.S. Fiber optic sensors and their applications. Presented at the 5th International Advanced Technologies Symposium (IATS’09), Karabuk, Turkey, 13–15 May 2009. [Google Scholar]
- Global Automotive Steering Gearbox Market 2019–2023. Available online: https://www.businesswire.com/news/home/20170519005585/en/Global-Metamaterials-Market---Key-Drivers-Forecast (accessed on 12 January 2019).
- Global Piezoelectric Smart Materials Market 2017–2021. Available online: https://www.businesswire.com/news/home/20180919005736/en/Global-Piezoelectric-Smart-Materials-Market-2017-2021-Post (accessed on 12 January 2019).
- Global Automation and Robotics Market in the Automotive Industry 2018–2022. Available online: https://www.businesswire.com/news/home/20180621006168/en/Global-Automation-Robotics-Market-Automotive-Industry-2018-2022 (accessed on 12 January 2019).
- Jonathan, R. Robotics, Smart Materials, and Their Future Impact for Humans, Article from the Book the Next Step: Exponential Life. 2017. Available online: https://www.bbvaopenmind.com/en/articles/robotics-smart-materials-and-their-future-impact-for-humans/ (accessed on 12 January 2019).
- Hasan, D.; Lee, C. Hybrid Metamaterial Absorber Platform for Sensing of CO2 Gas at Mid-IR. Adv. Sci. 2018, 5, 1700581. [Google Scholar] [CrossRef]
- Smith, S.; Narayanan, R.M.; Messaris, E. Medical radar considerations for detecting and monitoring Crohn’s disease. In Proceedings of the SPIE 9077, Radar Sensor Technology XVIII, 90770W, Baltimore, MD, USA, 29 May 2014. [Google Scholar] [CrossRef]
- Li, J.; Shah, C.M.; Withayachumnankul, W.; Ung, B.S.Y.; Mitchell, A.; Sriram, S.; Bhaskaran, M.; Chang, S.; Abbott, D. Flexible terahertz metamaterials for dual-axis strain sensing. Opt. Lett. 2013, 38, 12. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Z.; Matsuhisa, N.; Qi, D.; Leow, W.R.; Yang, H.; Yu, J.; Chen, G.; Liu, Y.; Wan, C.; et al. Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Adv. Mater. 2018, 30, 1706589. [Google Scholar] [CrossRef]
- Ari, S. Metamaterials in electromagnetics. Metamaterials 2007, 1, 2–11. [Google Scholar]
- Smith, D.R. What Are Metamaterials? The Research Group of D.R. Smith. Available online: http://people.ee.duke.edu/~drsmith/research.htm (accessed on 1 January 2019).
- Ni, X.; Weiner, M.; Alù, A.; Khanikaev, A.B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 2018. [Google Scholar] [CrossRef] [PubMed]
- Collett, E. Field Guide to Polarization; SPIE Press: Bellingham, WA, USA, 2005; ISBN 9780819478207. [Google Scholar] [CrossRef]
- Available online: http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Fundamentals/Electromagnetic_Radiation#Waves_and_their_Characteristics (accessed on 1 January 2019).
- Luebbers, R.J.; Kunz, K.S.; Schneider, M.; Hunsberger, F. A finite-difference time-domain near zone to far zone transformation (electromagnetic scattering). IEEE Trans. Antennas Propag. 1991, 39, 429–433. [Google Scholar] [CrossRef]
- Joulaina, K.; Muletb, J.P.; Marquierb, F.; Carminatib, R.; Greffet, J.J. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 2005, 57, 59–112. [Google Scholar] [CrossRef] [Green Version]
- Jacob, Z.; Alekseyev, L.V.; Narimanov, E. Optical Hyperlens: Far-field imaging beyond the diffraction limit. Opt. Express 2006, 14, 8247–8256. [Google Scholar] [CrossRef]
- Luan, L.; Sievert, P.R.; Ketterson, J.B. Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space. New J. Phys. 2006, 8, 264. [Google Scholar] [CrossRef]
- Li, M.; Yang, H.; Huang, Q. Transmission properties of composite metamaterials in free space. In Proceedings of the 2008 8th International Symposium on Antennas, Propagation and EM Theory, Kunming, China, 2–5 November 2008; pp. 612–614. [Google Scholar]
- Shehan, J.W.; Adams, R.S.; Weldon, T.P. A Coaxial Test Fixture for Transmission/Reflection Measurements of Metamaterials. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium, Orlando, FL, USA, 7–13 July 2013. [Google Scholar]
- Ozbey, B.; Demir, H.; Kurc, O.; Erturk, V.; Altintas, A. Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor. Sensors 2014, 14, 19609–19621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tankielun, A. Data Post-Processing and Hardware Architecture of Electromagnetic Near-Field Scanner; Shaker: Aachen, Germany, 2008. [Google Scholar]
- Pendry, J. All smoke and metamaterials. Nature 2009, 460, 579–580. [Google Scholar] [CrossRef]
- Veselago, V.G. The electrodynamics of substances with simultaneously negative values of ε, and μ. Sov. Phys. Uspekhi 1968, 47, 509–514. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Low Frequency Plasmons for Thin-Wire Structure. J. Phys. Condens. Matter 1998, 10, 4785–4809. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced non-linear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental Verification of a Negative Index of Refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [Green Version]
- Pendry, J.B. Negative Refraction. Contemp. Phys. 2004, 45, 191–202. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.I.; Wang, W.; Pacheco, J.; Chen, X.; Grzegorczyk, T.; Kong, J.A. A study of using Metamaterial as antenna substrates to enhance gain. Prog. Electromagn. Res. 2005, 51, 295–328. [Google Scholar] [CrossRef]
- Jensen, L.; Chan, C.T. Double-negative acoustic metamaterial. Phys. Rev. E 2004, 70, 055602. [Google Scholar]
- Withawat., W.; Christophe, F.; Derek, A. Compact electric-LC resonators for metamaterials. Opt. Express 2010, 18, 25912–25921. [Google Scholar] [CrossRef]
- Pendry, J.B.; Huidobro, P.A.; Ding, K. Computing one-dimensional metasurfaces. Phys. Rev. B 2019, 99, 085408. [Google Scholar] [CrossRef]
- Pendry, J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000, 85, 3966–3969. [Google Scholar] [CrossRef]
- Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silversuperlens. Science 2005, 308, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Liu, C.; Chen, J.; Cheng, C.; Kang, M. Tunable slow light in semiconductor metamaterial in a broad terahertz. J. Appl. Phys. 2010, 107, 093104. [Google Scholar]
- Singh, R.; Rockstuhl, C.; Lederer, F.; Zhang, W. Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Phys. Rev. B 2009, 79, 085111. [Google Scholar] [CrossRef]
- Chiam, S.Y.; Singh, R.; Rockstuhl, C.; Lederer, F.; Zhang, W.; Bettiol, A.A. Analogue of electromagnetically induced transparency in a terahertz metamaterial. Phys. Rev. B 2009, 80, 153103. [Google Scholar] [CrossRef]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Kind, H.; Yan, H.; Messer, B.; Law, M.; Yang, P. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160. [Google Scholar] [CrossRef]
- Pendry, J.B. Metamaterials in the sunshine. Nat. Mater. 2006, 5, 599–600. [Google Scholar] [CrossRef]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, B.; Shen, L.; Wang, H.; Zhang, X.; Zheludev, N.I.; Zhang, B. Ray-optics cloaking devices for large objects in incoherent natural light. Nat. Commun. 2013, 4, 2652. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Gao, F.; Shi, X.; Sun, H.; Zhang, B. Untra-thin three-dimensional thermal cloak. Phys. Rev. Lett. 2014, 112, 054301. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z. Superlenses to overcome the diffraction limit. Nat. Mater. 2008, 7, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Neu, J.; Krolla, B.; Paul, O.; Reinhard, B.; Beigang, R.; Rahm, M. Metamaterial-based gradient index lens with strong focusing in the THz frequency range. Opt. Express 2010, 18, 27748–27757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Bohn, B.J.; Schnell, M.; Kats, M.A.; Aieta, F.; Hillenbrand, R.; Capasso, F. Near-field imaging of phased array metasurfaces. Nano Lett. 2015, 15, 3851–3858. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Gao, Z.; Shi, X.; Yang, Z.; Lin, X.; Zhang, B. Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances. Opt. Express 2015, 23, 6896–6902. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.M.; Liu, A.Q.; Zhang, X.M.; Tsai, D.P.; Bourouina, T.; Teng, J.H.; Zhang, X.H.; Guo, H.C.; Tanoto, H.; Mei, T.; et al. Switchable magnetic metamaterials using micromachining processes. Adv. Mater. 2011, 23, 1792–1796. [Google Scholar] [CrossRef]
- Liu, N.; Guo, H.; Fu, L.; Kaiser, S.; Schweizer, H.; Giessen, H. Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 2008, 7, 31–37. [Google Scholar] [CrossRef]
- Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D.A.; Bartal, G.; Zhang, X. Three dimensional optical metamaterial exhibiting negative refractive index. Nature 2008, 455, 376–379. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhu, R.; Barnhart, M.V.; Huang, G.L. Enhanced flexural wave sensing by adaptive gradient-index metamaterials. Sci. Rep. 2016, 6, 35048. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Soh, C.K. Influence of loading on the near field based passive metamaterial in structural health monitoring. In Proceedings of the 10th International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, USA, 1–3 September 2015. [Google Scholar]
- Ozbey, B.; Demir, H.V.; Kurc, O.; Erturk, V.B.; Altintas, A. Wireless sensing in complex electromagnetic media: Construction materials and structural Monitoring. IEEE Sens. J. 2015, 15, 5545–5554. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Sun, H. Metamaterials application in sensing. Sensors 2012, 12, 2742–2765. [Google Scholar] [CrossRef] [PubMed]
- Melik, R.; Unal, E.; Perkgoz, N.K.; Puttlitz, C.; Demir, H. Flexible Metamaterials for wireless strain sensing. Appl. Phys. Lett. 2009, 95, 181108. [Google Scholar] [CrossRef]
- Boratay, K.A.; Ozbay, E. Low-temperature behavior of magnetic metamaterial elements. New J. Phys. 2009, 11, 043015. [Google Scholar] [CrossRef] [Green Version]
- Roper, D.K.; Ahn, W.; Taylor, B.; Dall’ Asen, A.G. Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures. IEEE Sens. J. 2010, 10, 531–540. [Google Scholar] [CrossRef]
- Engheta, N.; Richard, W.Z. Metamaterials: Physics and Engineering Explorations; Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-0-471-76102-0. [Google Scholar]
- Zouhdi, S.; Ari, S.; Alexey, P.V. Metamaterials and Plasmonics: Fundamentals, Modelling, Applications; Springer: New York, NY, USA, 2008; Chapter 3; pp. 1–10, 106. ISBN 978-1-4020-9406-4. [Google Scholar]
- Li, J.; Withayachumnankul, W.; Chang, S.; Abbott, D. Metamaterial-Based Strain Sensors. In Proceedings of the 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, Australia, 6–9 December 2011; pp. 30–32. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Soh, C.K. Application of Metamaterial Surface Plasmon and Waveguide for Robotic-Arm Based Structural Health Monitoring. J. Nondestruct. Eval. 2018, 37, 34. [Google Scholar] [CrossRef]
- Roper, K.D. Biological sensing with metamaterials. Biomedical Optics and Medical Imaging. SPIE, 2014. Available online: http://spie.org/x110281.xml (accessed on 12 January 2019).
- Melik, R.; Unal, E.; Perkgoz, N.K.; Puttlitz, C.; Demir, H.V. Metamaterial-based wireless strain sensors. Appl. Phys. Lett. 2009, 95, 011106. [Google Scholar] [CrossRef] [Green Version]
- Melik, R.; Perkgoz, N.K.; Unal, E.; Puttlitz, C.; Demir, H.V. Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications. J. Micromech. Microeng. 2008, 18, 115017. [Google Scholar] [CrossRef] [Green Version]
- Quinn, D.J. Microstructure, Residual Stress, and Mechanical Properties of Thin Film Materials for a Microfabricated Solid Oxide Fuel Cell. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2006. [Google Scholar]
- Melik, R.; Unal, E.; Perkgoz, N.K.; Puttlitz, C.; Demir, H.V. Metamaterial based telemetric strain sensing in different materials. Opt. Express 2010, 18, 5000–5007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melik, R.; Unal, E.; Perkgoz, N.K.; Puttlitz, C.; Santoni, B.; Kamstock, D. Nested metamaterials for wireless strain sensing. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 450–458. [Google Scholar] [CrossRef]
- Lu, M.; Qu, Y.; Lu, Y.; Ye, L.; Zhou, L.; Su, Z. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis. In Proceedings of the Third International Conference on Smart Materials and Nanotechnology in Engineering, Shenzhen, China, 2 April 2012. [Google Scholar] [CrossRef]
- Li, S.; Wu, J.; Wang, Z.M.; Jiang, Y. Nanoscale Sensors; Springer International Publishing: Cham, Switzerland, 2013; 281p, ISBN 978-3-319-02772-2. [Google Scholar]
- Ozbey, B.; Unal, E.; Ertugrul, H.; Kurc, O.; Puttlitz, C.M.; Erturk, V.B.; Altintas, A.; Demir, H.V. Wireless Displacement Sensing Enabled by Metamaterial Probes for Remote Structural Health Monitoring. Sensors 2014, 14, 1691–1704. [Google Scholar] [CrossRef] [Green Version]
- Ozbey, B.; Kurc, O.; Demir, H.V.; Erturk, V.B.; Altintas, A. Wireless Monitoring of a Structural Beam to be Used for Post-Earthquake Damage Assessment. In Proceedings of the 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Meloneras, Spain, 28 May–1 June 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Zhu, M. A split-ring-resonator-based polarization-insensitive ultra broadband filter in terahertz range. Proc. Nat. Res. Soc. 2017, 1, 01005. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.J.; Huang, M.; Tang, H.; Zeng, J.; Dong, L. Metamaterial Sensors. Int. J. Antennas Propag. 2013. [Google Scholar] [CrossRef]
- Chen, Y.; Ming, H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens. 2012, 2, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Cui, T.J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photonics Rev. 2014, 8, 137–145. [Google Scholar] [CrossRef]
- Zhang, H.C.; Liu, S.; Shen, X.; Chen, L.H.; Li, L.; Cui, T.J. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev. 2015, 9, 83–90. [Google Scholar] [CrossRef]
- Alù, A.; Engheta, N. Theory of linear chains of metamaterials/plasmonic particles as sub diffraction optical nano transmission lines. Phys. Rev. B 2006, 74, 205436. [Google Scholar] [CrossRef]
- Chaturvedi, P. Optical Metamaterials: Design, Characterization and Applications. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2009. [Google Scholar]
- Smith, D.R.; Vier, D.C.; Koschny, T.; Soukoulis, C.M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 2005, 71, 036617. [Google Scholar] [CrossRef] [PubMed]
- Metamaterials Technologies Inc. Available online: http://www.metamaterial.com/metamaterials/ (accessed on 1 January 2019).
- Yamunadevi, R.; Sundar, D.S.; Raja, A.S. Characteristics analysis of metamaterial based optical fiber. Optik 2016, 127, 9377–9385. [Google Scholar] [CrossRef]
- Liu, R.; Ji, C.; Zhao, Z. Metamaterials: Reshape and Rethink. Engineering 2015, 1, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Matt, H.M.; di Scalea, F.L. Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures. Smart Mater. Struct. 2007, 16, 1489. [Google Scholar] [CrossRef]
- Meta Technology. Available online: www.metachnology.com (accessed on 12 January 2019).
- Linbou System. Available online: https://www.linbou.com/ (accessed on 12 January 2019).
- Maker Bright. Interlink FSR 406 Force-Sensing Resistor: 1.5″ Square. 2015. Available online: https://www.makerbright.com/interlink-fsr-406-force-sensing-resistor-1-5-square.html (accessed on 17 October 2018).
- Polo, J.A., Jr.; Lakhtakia, A. Surface electromagnetic waves: A review. Laser Photonics Rev. 2011, 5, 234–246. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Anwar, R.S.; Ning, H.; Mao, L. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digit. Commun. Netw. 2018, 4, 244–257. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Pandit, N.; Pathak, N.P. Spoof Surface Plasmon Polariton-Based Reconfigurable Band-Pass Filter Using Planar Ring Resonator. Plasmonics 2018. [CrossRef]
- Available online: https://www.physics.nus.edu.sg/student/Honours%20Projects%20Repository%202014-15/Tham%20Yap%20Fung_thesis.pdf (accessed on 1 January 2019).
- Zhang, Y.; Zhao, J.; Cao, J.; Mao, B. Microwave Metamaterial Absorber for Non-Destructive Sensing Applications of Grain. Sensors 2018, 18, 1912. [Google Scholar] [CrossRef]
- Rozina, S.; Andrei, D.N.; Nicoleta, I.; Catalin-Andrei, T.; Frantisek, N.; Stanislava, F.; Petrica, V.; Adriana, S. Nondestructive testing of advanced materials using sensors with metamaterials. IOP Conf. Ser. Mater. Sci. Eng. 2016, 161, 012060. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z. A Kind of Potential Practical Sensors of Metamaterial in Electromagnetic Flaw Nondestructive Testing. Engineering 2011, 3, 750–754. [Google Scholar] [CrossRef]
- Gao, F.; Gao, Z.; Zhang, Y.; Shi, X.; Yang, Z.; Zhang, B. Vertical Transport of Subwavelength Localized Surface Electromagnetic Modes. Laser Photonics Rev. 2015, 9, 571–576. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Soh, C.K. Contactless load monitoring in near-field with surface localized spoof plasmons—A new breed of metamaterials for health of engineering structures. Sens. Actuators A Phys. 2016, 244, 156–165. [Google Scholar] [CrossRef]
- Huidobro, P.A.; Shen, X.P.; Cuerda, J.; Moreno, E.; Martin-Moreno, L.; Garcia-Vidal, F.J.; Cui, T.J.; Pendry, J.B. Magnetic Localized Surface Plasmons. Phys. Rev. X 2014, 4, 021003. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.Y.; Soh, C.K. Damage detection and characterization using EMI technique under varying axial load. Smart Struct. Syst. 2013, 11, 349–364. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, C.; Park, S.; Koh, K.T. Real-time strength development monitoring for concrete structures using wired and wireless electro-mechanical impedance techniques. KSCE J. Civ. Eng. 2013, 17, 1432–1436. [Google Scholar] [CrossRef]
- Halabe, U.B.; Maser, K.; Kausel, E. Propagation Characteristics of Electromagnetic Waves in Concrete; U.S Army Research Office, MIT, Department of Civil Engineering: Cambridge, MA, USA, 1988. [Google Scholar]
- Yoo, Y.J.; Ju, S.; Park, S.Y.; Kim, Y.J.; Bong, J.; Lim, T.; Kim, K.W.; Rhee, J.Y.; Lee, Y.P. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets. Sci. Rep. 2015, 5, 14018. [Google Scholar] [CrossRef] [Green Version]
- Annamdas, V.G.M.; Yang, Y. Practical implementation of piezo-impedance sensors in monitoring of excavation support structures. Struct. Control Health Monit. 2012, 19, 231–245. [Google Scholar] [CrossRef]
- Park, G.; Sohn, H.; Farrar, C.R.; Inman, D.J. Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward. Shock Vib. Dig. SAGE Publ. 2003, 35, 451–463. [Google Scholar] [CrossRef]
- Du, G.; Huo, L.; Kong, Q.; Song, G. Damage detection of pipeline multiple cracks using piezoceramic transducers. J. Vibroeng. 2016, 18, 2828–2838. [Google Scholar] [CrossRef]
- Park, G.; Cudney, H.H.; Inman, D.J. Impedance-based Health Monitoring of Civil Structural Components. J. Infrastruct. Syst. ASCE 2000, 6, 153–160. [Google Scholar] [CrossRef]
- Park, S.; Ahmad, S.; Yun, C.B.; Roh, Y. Multiple Crack Detection of Concrete Structures Using Impedance-Based Structural Health Monitoring Techniques. Exp. Mech. 2006, 46, 609–618. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Radhika, M.A. Electromechanical Impedance of Piezoelectric Transducers for Monitoring Metallic and Non Metallic Structures: A review of Wired, Wireless and Energy Harvesting Methods. J. Intell. Mater. Syst. Struct. 2013, 24, 1019–1040. [Google Scholar] [CrossRef]
- Aranguren, G.; Monje, P.M.; Cokonaj, V.; Barrera, E.; Ruiz, M. Ultrasonic wave-based structural health monitoring embedded instrument. Rev. Sci. Instrum. 2013, 84, 125106. [Google Scholar] [CrossRef] [Green Version]
- Annamdas, V.G.M.; Soh, C.K. Application of Electromechanical impedance technique for Engineering Structures: Review and Future Issues. J. Intell. Mater. Syst. Struct. 2010, 21, 41–59. [Google Scholar] [CrossRef]
- Thorsten, W.; Murugesu, S.; Peter, T.; Ross, W. Catchment Classification and Hydrologic Similarity. Geopgr. Compass 2007, 1, 901–931. [Google Scholar] [CrossRef]
- H.P 2019 Impedance Analyzer of the Past Couple of Decades. Available online: http://www.testequipmentdepot.com/usedequipment/hewlettpackard/impedanceanalyzers/4192a.htm (accessed on 14 January 2019).
- Wayne Kerr, LCR Meter Series. Available online: http://www.waynekerrtest.com/products_detail.php?indexs=7&brand=Wayne%20Kerr (accessed on 12 January 2019).
- Keysight, Understanding the Fundamental Principles of Vector Network Analysis. Available online: https://literature.cdn.keysight.com/litweb/pdf/5965-7707E.pdf (accessed on 22 December 2018).
- Philip, M.P. The 2010–2015 Outlook for Metamaterials in India. ICON Group International, Inc. Available online: http://www.amazon.com/The-2010-2015-Outlook-Metamaterials-India/dp/B002IC1HEQ (accessed on 7 July 2009).
- Annamdas, V.G.M.; Soh, C.K. Load monitoring using calibrated piezo diaphragm based impedance strain sensor and wireless sensor network in real time. Smart Mater. Struct. 2017, 26, 045036. [Google Scholar] [CrossRef]
- Arduino. Available online: https://www.arduino.cc/ (accessed on 12 January 2019).
- Arduino Hardware, Language Reference. Available online: https://www.arduino.cc/reference/en/ (accessed on 12 January 2019).
- Arduino Software. Available online: https://www.arduino.cc/en/Main/Software (accessed on 17 October 2018).
- Arduino “Reference-analogRead”. Available online: https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/ (accessed on 17 October 2018).
- Parallax Inc. PLX-DAQ. Available online: https://www.parallax.com/downloads/plx-daq (accessed on 16 October 2018).
- Liu, Y.; Nayak, S. Structural Health Monitoring: State of the Art and Perspectives. J. Miner. Met. Mater. Soc. 2012, 64, 789–792. [Google Scholar] [CrossRef]
- Sun, M.; Staszewski, W.J.; Swamy, R.N. Smart Sensing Technologies for Structural Health Monitoring of Civil Engineering Structures. Adv. Civ. Eng. 2010. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Annamdas, K.K. Active and passive interaction mechanism of smart materials for health monitoring of engineering structures. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 30 March 2009. [Google Scholar] [CrossRef]
- Chen, Y.; Xue, X. Advances in the Structural Health Monitoring of Bridges Using Piezoelectric Transducers. Sensors 2018, 18, 4312. [Google Scholar] [CrossRef] [PubMed]
- Fateri, S.; Lowe, P.S.; Engineer, B.; Boulgouris, N.V. Investigation of Ultrasonic Guided Waves Interacting With Piezoelectric Transducers. IEEE Sens. J. 2015, 15, 4319–4328. [Google Scholar] [CrossRef]
- Miniaci, M.; Gliozzi, A.S.; Morvan, B.; Krushynska, A.; Bosia, F.; Scalerandi, M.; Pugno, N.M. Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals. Phys. Rev. Lett. 2017, 118, 214301. [Google Scholar] [CrossRef] [Green Version]
- Kudelaa, P.; Ostachowicz, W. Comparison of Lamb wave focusing performance using wave dispersion-compensated actuation and plano-concave lenses. J. Appl. Phys. 2018, 124, 094901. [Google Scholar] [CrossRef]
- Tian, Z.; Yu, L. Wavefront modulation and controlling for Lamb waves using surface bonded slice lenses. J. Appl. Phys. 2017, 122, 234902. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, X.; Zhang, Y.; Qu, Y.; Xu, M.; Fu, K.; Ye, L. Active vibration control of a hoop truss structure with piezoelectric bending actuators based on a fuzzy logic algorithm. Smart Mater. Struct. 2018, 27, 085030. [Google Scholar] [CrossRef]
- Aggogeri, F.; Borboni, A.; Merlo, A.; Pellegrini, N.; Ricatto, R. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control. Sensors 2016, 16, 1577. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Lee, W.; Kang, W.; Shin, E.; Ryu, J.; Choi, H. Review of piezoelectric micromachined ultrasonic transducers and their applications. J. Micromech. Microeng. 2017, 27, 113001. [Google Scholar] [CrossRef] [Green Version]
- Caliò, R.; Rongala, U.B.; Camboni, D.; Milazzo, M.; Stefanini, C.; De Petris, G.; Oddo, C.M. Piezoelectric Energy Harvesting Solutions. Sensors 2014, 14, 4755–4790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sushi, Z.; Yu, Z. A review of macro fiber composite and its application. J. Vib. Meas. Diagn. 2013, 33, 157–160. [Google Scholar]
- Anton, S.R.; Sodano, H.A. A Review of Power Harvesting Using Piezoelectric Materials (2003–2006). Smart Mater. Struct. 2007, 16, R1–R21. [Google Scholar] [CrossRef]
- Ovalovs, A.; Wesolowski, M.; Barkanov, E.; Gluhihs, S. Application of macro-fiber composite (MFC) as a piezoelectric actuator. J. Vibroeng. 2009, 11, 105–112. [Google Scholar]
- Sun, Z.; Rocha, B.; Wu, K.-T.; Mrad, N. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring. Int. J. Aerosp. Eng. 2013. [Google Scholar] [CrossRef]
Resistor | 10 Ω | 100 Ω | 510 Ω | 1 kΩ | 5.1 kΩ | 10 kΩ | 51 kΩ | 100 kΩ |
---|---|---|---|---|---|---|---|---|
Range of digital value (difference between min to max applied load) | 19.86 | 158.08 | 418.88 | 515.14 | 573.42 | 428.28 | 195.24 | 122.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Annamdas, V.G.M.; Soh, C.K. A Perspective of Non-Fiber-Optical Metamaterial and Piezoelectric Material Sensing in Automated Structural Health Monitoring. Sensors 2019, 19, 1490. https://doi.org/10.3390/s19071490
Annamdas VGM, Soh CK. A Perspective of Non-Fiber-Optical Metamaterial and Piezoelectric Material Sensing in Automated Structural Health Monitoring. Sensors. 2019; 19(7):1490. https://doi.org/10.3390/s19071490
Chicago/Turabian StyleAnnamdas, Venu Gopal Madhav, and Chee Kiong Soh. 2019. "A Perspective of Non-Fiber-Optical Metamaterial and Piezoelectric Material Sensing in Automated Structural Health Monitoring" Sensors 19, no. 7: 1490. https://doi.org/10.3390/s19071490
APA StyleAnnamdas, V. G. M., & Soh, C. K. (2019). A Perspective of Non-Fiber-Optical Metamaterial and Piezoelectric Material Sensing in Automated Structural Health Monitoring. Sensors, 19(7), 1490. https://doi.org/10.3390/s19071490