1. Introduction
2. Study Area
3. Small Baseline Interferometry
3.1. Data
3.2. Data Processing and Post-Processing
4. Results
4.1. Small Baseline Interferometry Velocity Fields
4.2. Interseismic Strain Accumulation Analysis on the Kašina Fault
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prelogović, E.; Saftić, B.; Kuk, V.; Velić, J.; Dragaš, M.; Lučić, D. Tectonic activity in the Croatian part of the Pannonian basin. Tectonophysics 1998, 297, 283–293. [Google Scholar] [CrossRef]
- Herak, D.; Herak, M.; Tomljenović, B. Seismicity and earthquake focal mechanisms in North-Western Croatia. Tectonophysics 2009, 465, 212–220. [Google Scholar] [CrossRef]
- Markušić, S.; Herak, M. Seismic zoning of Croatia. Nat. Hazards 1999, 18, 269–285. [Google Scholar] [CrossRef]
- Tomljenović, B.; Csontos, L. Neogene-quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zagorje and Karlovac Basins, Croatia). Int. J. Earth Sci. 2001, 90, 560–578. [Google Scholar] [CrossRef]
- Grenerczy, G.; Sella, G.; Stein, S.; Kenyeres, A. Tectonic implications of the GPS velocity field in the northern Adriatic region. Geophys. Res. Lett. 2005, 32, l16311. [Google Scholar] [CrossRef]
- Grenerczy, G.; Kenyeres, A.; Fejes, I. Present crustal movement and strain distribution in Central Europe inferred from GPS measurements. J. Geophys. Res. Solid Earth 2000, 105, 21835–21846. [Google Scholar] [CrossRef]
- Matoš, B.; Tomljenović, B.; Trenc, N. Identification of tectonically active areas using DEM: a quantitative morphometric analysis of Mt. Medvednica, NW Croatia. Geol. Q. 2014, 58, 51–70. [Google Scholar] [CrossRef]
- Pribičević, B.; Medak, D.; Đapo, A. Geodetic contribution to the geodynamic research of the area of the City of Zagreb. In Annual 2010/2011 of the Croatian Academy of Engineering; Croatian Academy of Engineering: Zagreb, Croatia, 2012; pp. 11–22. [Google Scholar]
- Pribičević, B.; Đapo, A. Movement analysis on Geodynamic network of the City of Zagreb from different time epochs. Geod. List 2016, 70, 207–230. [Google Scholar]
- Pribičević, B.; Đapo, A.; Govorčin, M. The application of satellite technology in the study of geodynamic movements in the wider Zagreb area. Tehnički Vjesnik 2017, 24, 503–512. [Google Scholar][Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef][Green Version]
- Bekaert, D.; Walters, R.; Wright, T.; Hooper, A.; Parker, D. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef][Green Version]
- Herak, D.; Cabor, S. Earthquake catalogue for SR Croatia (Yugoslavia) and neighbouring regions for the years 1986 and 1987. Geofizika 1989, 6, 101–121. [Google Scholar]
- Markušić, S.; Herak, D.; Ivančić, I.; Sović, I.; Herak, M.; Prelogović, E. Seismicity of Croatia in the period 1993–1996 and the Ston-Slano earthquake of 1996. Geofizika 1998, 15, 83–101. [Google Scholar]
- Ivančić, I.; Herak, D.; Markušić, S.; Sović, I.; Herak, M. Seismicity of Croatia in the period 1997–2001/Seizmicnost Hrvatske u razdoblju 1997–2001. Geofizika 2002, 18, 17–29. [Google Scholar]
- Ivančić, I.; Herak, D.; Markušić, S.; Sović, I.; Herak, M. Seismicity of Croatia in the period 2002–2005. Geofizika 2006, 23, 87–104. [Google Scholar]
- Ivančić, I.; Herak, D.; Herak, M.; Allegretti, I.; Fiket, T.; Kuk, K.; Markušić, S.; Prevolnik, S.; Sović, I.; Dasović, I.; et al. Seismicity of Croatia in the period 2006–2015. Geofizika 2018, 35, 69–98. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef][Green Version]
- Hetland, E.; Musé, P.; Simons, M.; Lin, Y.; Agram, P.; DiCaprio, C. Multiscale InSAR time series (MInTS) analysis of surface deformation. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Gong, W.; Thiele, A.; Hinz, S.; Meyer, F.J.; Hooper, A.; Agram, P.S. Comparison of Small Baseline Interferometric SAR Processors for Estimating Ground Deformation. Remote Sens. 2016, 8, 330. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 2012, 514, 1–13. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Myer, D.; Mellors, R.; Shimada, M.; Brooks, B.; Foster, J. Accuracy and resolution of ALOS interferometry: Vector deformation maps of the Father’s Day intrusion at Kilauea. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3524–3534. [Google Scholar] [CrossRef]
- ECMWF. ERA5 Reanalysis Datasets. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (accessed on 20 July 2019).
- Pribičević, B.; Đapo, A.; Prelogović, E. The combined space-time analysis of geodetic and geological surveys on the geodynamic network of the wider Zagreb area. 2019; in preparation. [Google Scholar]
- Herring, T.; King, R.; McClusky, S. Introduction to GAMIT/GLOBK; Release 10.6; Massachusetts Institute of Technology: Cambridge, MA, USA, 2015. [Google Scholar]
- Doornbos, E.; Scharroo, R.; Klinkrad, H.; Zandbergen, R.; Fritsche, B. Improved modelling of surface forces in the orbit determination of ERS and Envisat. Can. J. Remote Sens. 2002, 28, 535–543. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Kampes, B.M.; Hanssen, R.F.; Perski, Z. Radar interferometry with public domain tools. In Proceedings of the FRINGE, Frascati, Italy, 1–5 December 2003; Volume 3. [Google Scholar]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Marinkovic, P.; Ketelaar, G.; van Leijen, F.; Hanssen, R. InSAR quality control: Analysis of five years of corner reflector time series. In Proceedings of the Fringe 2007 Workshop (ESA SP-649), Frascati, Italy, 26–30 November 2007; Volume 26, p. 30. [Google Scholar]
- Tomljenović, B.; Csontos, L.; Márton, E.; Márton, P. Tectonic evolution of the northwestern Internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia. Geol. Soc. Lond. Spec. Publ. 2008, 298, 145–167. [Google Scholar] [CrossRef]
- Savage, J.; Burford, R. Geodetic determination of relative plate motion in central California. J. Geophys. Res. 1973, 78, 832–845. [Google Scholar] [CrossRef][Green Version]
- Kuk, V.; Prelogović, E.; Sović, I.; Kuk, K.; Šariri, K. Seismological and seismo-tectonical properties of the wider Zagreb area. Građevinar 2000, 52, 647–653. [Google Scholar]
- Fattahi, H.; Amelung, F. InSAR uncertainty due to orbital errors. Geophys. J. Int. 2014, 199, 549–560. [Google Scholar] [CrossRef][Green Version]





Satellite Mission | ALOS-PALSAR | Envisat-ASAR | |
---|---|---|---|
Wavelength [cm] | 23.6 | 5.6 | |
First date (yyyy-mm-dd) | 2007-02-03 | 2002-12-28 | |
Last date (yyyy-mm-dd) | 2010-12-30 | 2010-07-24 | |
Orbit direction | Ascending | Ascending | |
Inc. angle [deg] | 38.75 | 21.1 | |
Acquist. mode | Fine Single Beam | Fine Dual Beam | Stripmap |
Imaging mode | HH or VV | HH + HV or VV + VH | HH or VV |
Spatial resolution (range × azimuth [m] ) | 4.68 × 3.13 | 9.37 × 3.14 | 7.81 × 4.04 |
Critc. perp. baseline [km] | 13.1 | 6.5 | 1.1 |
Numb. of images | 6 | 8 | 27 |
StaMPS-SB Parameters | ALOS-PALSAR | Envisat-ASAR |
---|---|---|
Number of interferograms | 21 | 64 |
Weed standard deviation | 0.6 | 0.8 |
Weed time window [days] | 1100 | 1100 |
Merge resample size | 300 | 300 |
Merge standard deviation | 0.2 | 0.4 |
Unwrap grid size [m] | 100 | 100 |
Unwrap time [days] | 1500 | 1500 |
Reference point [Lon Lat] [deg] | 16.02 45.81 | 16.02 45.81 |
Reference radius | 500 | 500 |
Statistics | ALOS-PALSAR | Envisat-ASAR | |||
---|---|---|---|---|---|
Before Filtering | After Filtering | Before Filtering | After Filtering | ||
Num. of DS points [#] | 15,033 | 12,430 | 8922 | 8094 | |
Velocity model [mm/year] | Median | 0.51 | 0.52 | 0.40 | 0.41 |
Interquartile range | 2.01 | 1.99 | 0.77 | 0.75 | |
Stand. dev. model [mm/year] | Median | 3.49 | 3.12 | 2.00 | 1.93 |
Interquartile range | 2.56 | 1.72 | 0.77 | 0.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).